Non Parametric RDA MCF Example: Difference between revisions
Kate Racaza (talk | contribs) |
Kate Racaza (talk | contribs) No edit summary |
||
Line 1: | Line 1: | ||
[[ | <noinclude>{{Banner Weibull Examples}} | ||
''This article appears in the [[Non-Parametric_Recurrent_Event_Data_Analysis]] article.'' | |||
</noinclude> | |||
A health care company maintains five identical pieces of equipment used by a hospital. When a piece of equipment fails, the company sends a crew to repair it. The following table gives the failure and censoring ages for each machine, where the + sign indicates a censoring age. | |||
<br> | |||
<center><math>\begin{matrix} | |||
Equipment ID & Months \\ | |||
\text{1} & \text{5, 10 , 15, 17+} \\ | |||
\text{2} & \text{6, 13, 17, 19+} \\ | |||
\text{3} & \text{12, 20, 25, 26+} \\ | |||
\text{4} & \text{13, 15, 24+} \\ | |||
\text{5} & \text{16, 22, 25, 28+} \\ | |||
\end{matrix}</math></center> | |||
Estimate the MCF values, with 95% confidence bounds. | |||
<br>'''Solution''' | |||
The MCF estimates are obtained as follows: | |||
<center><math>\begin{matrix} | |||
ID & Months ({{t}_{i}}) & State & {{r}_{i}} & 1/{{r}_{i}} & {{M}^{*}}({{t}_{i}}) \\ | |||
\text{1} & \text{5} & \text{F} & \text{5} & \text{0}\text{.20} & \text{0}\text{.20} \\ | |||
\text{2} & \text{6} & \text{F} & \text{5} & \text{0}\text{.20} & \text{0}\text{.20 + 0}\text{.20 = 0}\text{.40} \\ | |||
\text{1} & \text{10} & \text{F} & \text{5} & \text{0}\text{.20} & \text{0}\text{.40 + 0}\text{.20 = 0}\text{.60} \\ | |||
\text{3} & \text{12} & \text{F} & \text{5} & \text{0}\text{.20} & \text{0}\text{.60 + 0}\text{.20 = 0}\text{.80} \\ | |||
\text{2} & \text{13} & \text{F} & \text{5} & \text{0}\text{.20} & \text{0}\text{.80+0}\text{.20 =1}\text{.00} \\ | |||
\text{4} & \text{13} & \text{F} & \text{5} & \text{0}\text{.20} & \text{1}\text{.00 + 0}\text{.20 = 1}\text{.20} \\ | |||
\text{1} & \text{15} & \text{F} & \text{5} & \text{0}\text{.20} & \text{1}\text{.20 + 0}\text{.20 =1}\text{.40} \\ | |||
\text{4} & \text{15} & \text{F} & \text{5} & \text{0}\text{.20} & \text{1}\text{.40 + 0}\text{.20 = 1}\text{.60} \\ | |||
\text{5} & \text{16} & \text{F} & \text{5} & \text{0}\text{.20} & \text{1}\text{.60 + 0}\text{.20 = 1}\text{.80} \\ | |||
\text{2} & \text{17} & \text{F} & \text{5} & \text{0}\text{.20} & \text{1}\text{.80 + 0}\text{.20 = 2}\text{.0} \\ | |||
\text{1} & \text{17} & \text{S} & \text{4} & {} & {} \\ | |||
\text{2} & \text{19} & \text{S} & \text{3} & {} & {} \\ | |||
\text{3} & \text{20} & \text{F} & \text{3} & \text{0}\text{.33} & \text{2}\text{.00 + 0}\text{.33 = 2}\text{.33} \\ | |||
\text{5} & \text{22} & \text{F} & \text{3} & \text{0}\text{.33} & \text{2}\text{.33 + 0}\text{.33 = 2}\text{.66} \\ | |||
\text{4} & \text{24} & \text{S} & \text{2} & {} & {} \\ | |||
\text{3} & \text{25} & \text{F} & \text{2} & \text{0}\text{.50} & \text{2}\text{.66 + 0}\text{.50 = 3}\text{.16} \\ | |||
\text{5} & \text{25} & \text{F} & \text{2} & \text{0}\text{.50} & \text{3}\text{.16 + 0}\text{.50 = 3}\text{.66} \\ | |||
\text{3} & \text{26} & \text{S} & \text{1} & {} & {} \\ | |||
\text{5} & \text{28} & \text{S} & \text{0} & {} & {} \\ | |||
\end{matrix}</math></center> | |||
Using the MCF variance equation, the following table of variance values can be obtained: | |||
{| border="1" align="center" style="border-collapse: collapse;" cellpadding="5" cellspacing="5" | |||
|- | |||
! ID | |||
! Months | |||
! State | |||
! <span class="texhtml">''r''<sub>''i''</sub></span> | |||
! <span class="texhtml">''V''''a''''r''<sub>''i''</sub></span> | |||
|- | |||
| 1 | |||
| 5 | |||
| F | |||
| 5 | |||
| <math>(\tfrac{1}{5})^2[(1-\tfrac{1}{5})^2+4(0-\tfrac{1}{5})^2]=0.032</math> | |||
|- | |||
| 2 | |||
| 6 | |||
| F | |||
| 5 | |||
| <math>0.032+(\tfrac{1}{5})^2[(1-\tfrac{1}{5})^2+4(0-\tfrac{1}{5})^2]=0.064</math> | |||
|- | |||
| 1 | |||
| 10 | |||
| F | |||
| 5 | |||
| <math>0.064+(\tfrac{1}{5})^2[(1-\tfrac{1}{5})^2+4(0-\tfrac{1}{5})^2]=0.096</math> | |||
|- | |||
| 3 | |||
| 12 | |||
| F | |||
| 5 | |||
| <math>0.096+(\tfrac{1}{5})^2[(1-\tfrac{1}{5})^2+4(0-\tfrac{1}{5})^2]=0.128</math> | |||
|- | |||
| 2 | |||
| 13 | |||
| F | |||
| 5 | |||
| <math>0.128+(\tfrac{1}{5})^2[(1-\tfrac{1}{5})^2+4(0-\tfrac{1}{5})^2]=0.160</math> | |||
|- | |||
| 4 | |||
| 13 | |||
| F | |||
| 5 | |||
| <math>0.160+(\tfrac{1}{5})^2[(1-\tfrac{1}{5})^2+4(0-\tfrac{1}{5})^2]=0.192</math> | |||
|- | |||
| 1 | |||
| 15 | |||
| F | |||
| 5 | |||
| <math>0.192+(\tfrac{1}{5})^2[(1-\tfrac{1}{5})^2+4(0-\tfrac{1}{5})^2]=0.224</math> | |||
|- | |||
| 4 | |||
| 15 | |||
| F | |||
| 5 | |||
| <math>0.224+(\tfrac{1}{5})^2[(1-\tfrac{1}{5})^2+4(0-\tfrac{1}{5})^2]=0.256</math> | |||
|- | |||
| 5 | |||
| 16 | |||
| F | |||
| 5 | |||
| <math>0.256+(\tfrac{1}{5})^2[3(0-\tfrac{1}{5})^2+2(1-\tfrac{1}{5})^2]=0.288</math> | |||
|- | |||
| 2 | |||
| 17 | |||
| F | |||
| 5 | |||
| <math>0.288+(\tfrac{1}{5})^2[(1-\tfrac{1}{5})^2+4(0-\tfrac{1}{5})^2]=0.320</math> | |||
|- | |||
| 1 | |||
| 17 | |||
| S | |||
| 4 | |||
| | |||
|- | |||
| 2 | |||
| 19 | |||
| S | |||
| 3 | |||
| | |||
|- | |||
| 3 | |||
| 20 | |||
| F | |||
| 3 | |||
| <math>0.320+(\tfrac{1}{5})^2[(1-\tfrac{1}{5})^2+2(0-\tfrac{1}{5})^2]=0.394</math> | |||
|- | |||
| 5 | |||
| 22 | |||
| F | |||
| 3 | |||
| <math>0.394+(\tfrac{1}{5})^2[2(0-\tfrac{1}{5})^2+4(1-\tfrac{1}{5})^2]=0.468</math> | |||
|- | |||
| 4 | |||
| 24 | |||
| S | |||
| 2 | |||
| | |||
|- | |||
| 3 | |||
| 25 | |||
| F | |||
| 2 | |||
| <math>0.468+(\tfrac{1}{5})^2[(1-\tfrac{1}{5})^2+4(0-\tfrac{1}{5})^2]=0.593</math> | |||
|- | |||
| 5 | |||
| 25 | |||
| F | |||
| 2 | |||
| <math>0.580+(\tfrac{1}{5})^2[(0-\tfrac{1}{5})^2+4(1-\tfrac{1}{5})^2]=0.718</math> | |||
|- | |||
| 3 | |||
| 26 | |||
| S | |||
| 1 | |||
| | |||
|- | |||
| 5 | |||
| 28 | |||
| S | |||
| 0 | |||
| | |||
|} | |||
Using the equation for the MCF bounds and <span class="texhtml">''K''<sub>5</sub> = 1.644</span> for a 95% confidence level, the confidence bounds can be obtained as follows: | |||
<center><math>\begin{matrix} | |||
ID & Months & State & MC{{F}_{i}} & Va{{r}_{i}} & MC{{F}_{{{L}_{i}}}} & MC{{F}_{{{U}_{i}}}} \\ | |||
\text{1} & \text{5} & \text{F} & \text{0}\text{.20} & \text{0}\text{.032} & 0.0459 & 0.8709 \\ | |||
\text{2} & \text{6} & \text{F} & \text{0}\text{.40} & \text{0}\text{.064} & 0.1413 & 1.1320 \\ | |||
\text{1} & \text{10} & \text{F} & \text{0}\text{.60} & \text{0}\text{.096} & 0.2566 & 1.4029 \\ | |||
\text{3} & \text{12} & \text{F} & \text{0}\text{.80} & \text{0}\text{.128} & 0.3834 & 1.6694 \\ | |||
\text{2} & \text{13} & \text{F} & \text{1}\text{.00} & \text{0}\text{.160} & 0.5179 & 1.9308 \\ | |||
\text{4} & \text{13} & \text{F} & \text{1}\text{.20} & \text{0}\text{.192} & 0.6582 & 2.1879 \\ | |||
\text{1} & \text{15} & \text{F} & \text{1}\text{.40} & \text{0}\text{.224} & 0.8028 & 2.4413 \\ | |||
\text{4} & \text{15} & \text{F} & \text{1}\text{.60} & \text{0}\text{.256} & 0.9511 & 2.6916 \\ | |||
\text{5} & \text{16} & \text{F} & \text{1}\text{.80} & \text{0}\text{.288} & 1.1023 & 2.9393 \\ | |||
\text{2} & \text{17} & \text{F} & \text{2}\text{.0} & \text{0}\text{.320} & 1.2560 & 3.1848 \\ | |||
\text{1} & \text{17} & \text{S} & {} & {} & {} & {} \\ | |||
\text{2} & \text{19} & \text{S} & {} & {} & {} & {} \\ | |||
\text{3} & \text{20} & \text{F} & \text{2}\text{.33} & \text{0}\text{.394} & 1.4990 & 3.6321 \\ | |||
\text{5} & \text{22} & \text{F} & \text{2}\text{.66} & \text{0}\text{.468} & 1.7486 & 4.0668 \\ | |||
\text{4} & \text{24} & \text{S} & {} & {} & {} & {} \\ | |||
\text{3} & \text{25} & \text{F} & \text{3}\text{.16} & \text{0}\text{.593} & 2.1226 & 4.7243 \\ | |||
\text{5} & \text{25} & \text{F} & \text{3}\text{.66} & \text{0}\text{.718} & 2.5071 & 5.3626 \\ | |||
\text{3} & \text{26} & \text{S} & {} & {} & {} & {} \\ | |||
\text{5} & \text{28} & \text{S} & {} & {} & {} & {} \\ | |||
\end{matrix}</math></center> | |||
The analysis presented in this example can be performed automatically in Weibull++'s non-parametric RDA folio, as shown next. | |||
[[Image:Recurrent Data Example 2 Data.png|center|550px]] | |||
Note: In the folio above, the <span class="texhtml">''F''</span> refers to failures and <span class="texhtml">''E''</span> refers to suspensions (or censoring ages). The results, with calculated MCF values and upper and lower 95% confidence limits, are shown next along with the graphical plot. | |||
[[Image:Recurrent Data Example 2 Result.png|center|550px]] | |||
[[Image:Recurrent Data Example 2 Plot.png|center|550px]] |
Revision as of 05:57, 13 August 2012
New format available! This reference is now available in a new format that offers faster page load, improved display for calculations and images and more targeted search.
As of January 2024, this Reliawiki page will not continue to be updated. Please update all links and bookmarks to the latest references at Weibull examples and Weibull reference examples.
This article appears in the Non-Parametric_Recurrent_Event_Data_Analysis article.
A health care company maintains five identical pieces of equipment used by a hospital. When a piece of equipment fails, the company sends a crew to repair it. The following table gives the failure and censoring ages for each machine, where the + sign indicates a censoring age.
Estimate the MCF values, with 95% confidence bounds.
Solution
The MCF estimates are obtained as follows:
Using the MCF variance equation, the following table of variance values can be obtained:
ID | Months | State | ri | V'a'ri |
---|---|---|---|---|
1 | 5 | F | 5 | [math]\displaystyle{ (\tfrac{1}{5})^2[(1-\tfrac{1}{5})^2+4(0-\tfrac{1}{5})^2]=0.032 }[/math] |
2 | 6 | F | 5 | [math]\displaystyle{ 0.032+(\tfrac{1}{5})^2[(1-\tfrac{1}{5})^2+4(0-\tfrac{1}{5})^2]=0.064 }[/math] |
1 | 10 | F | 5 | [math]\displaystyle{ 0.064+(\tfrac{1}{5})^2[(1-\tfrac{1}{5})^2+4(0-\tfrac{1}{5})^2]=0.096 }[/math] |
3 | 12 | F | 5 | [math]\displaystyle{ 0.096+(\tfrac{1}{5})^2[(1-\tfrac{1}{5})^2+4(0-\tfrac{1}{5})^2]=0.128 }[/math] |
2 | 13 | F | 5 | [math]\displaystyle{ 0.128+(\tfrac{1}{5})^2[(1-\tfrac{1}{5})^2+4(0-\tfrac{1}{5})^2]=0.160 }[/math] |
4 | 13 | F | 5 | [math]\displaystyle{ 0.160+(\tfrac{1}{5})^2[(1-\tfrac{1}{5})^2+4(0-\tfrac{1}{5})^2]=0.192 }[/math] |
1 | 15 | F | 5 | [math]\displaystyle{ 0.192+(\tfrac{1}{5})^2[(1-\tfrac{1}{5})^2+4(0-\tfrac{1}{5})^2]=0.224 }[/math] |
4 | 15 | F | 5 | [math]\displaystyle{ 0.224+(\tfrac{1}{5})^2[(1-\tfrac{1}{5})^2+4(0-\tfrac{1}{5})^2]=0.256 }[/math] |
5 | 16 | F | 5 | [math]\displaystyle{ 0.256+(\tfrac{1}{5})^2[3(0-\tfrac{1}{5})^2+2(1-\tfrac{1}{5})^2]=0.288 }[/math] |
2 | 17 | F | 5 | [math]\displaystyle{ 0.288+(\tfrac{1}{5})^2[(1-\tfrac{1}{5})^2+4(0-\tfrac{1}{5})^2]=0.320 }[/math] |
1 | 17 | S | 4 | |
2 | 19 | S | 3 | |
3 | 20 | F | 3 | [math]\displaystyle{ 0.320+(\tfrac{1}{5})^2[(1-\tfrac{1}{5})^2+2(0-\tfrac{1}{5})^2]=0.394 }[/math] |
5 | 22 | F | 3 | [math]\displaystyle{ 0.394+(\tfrac{1}{5})^2[2(0-\tfrac{1}{5})^2+4(1-\tfrac{1}{5})^2]=0.468 }[/math] |
4 | 24 | S | 2 | |
3 | 25 | F | 2 | [math]\displaystyle{ 0.468+(\tfrac{1}{5})^2[(1-\tfrac{1}{5})^2+4(0-\tfrac{1}{5})^2]=0.593 }[/math] |
5 | 25 | F | 2 | [math]\displaystyle{ 0.580+(\tfrac{1}{5})^2[(0-\tfrac{1}{5})^2+4(1-\tfrac{1}{5})^2]=0.718 }[/math] |
3 | 26 | S | 1 | |
5 | 28 | S | 0 |
Using the equation for the MCF bounds and K5 = 1.644 for a 95% confidence level, the confidence bounds can be obtained as follows:
The analysis presented in this example can be performed automatically in Weibull++'s non-parametric RDA folio, as shown next.
Note: In the folio above, the F refers to failures and E refers to suspensions (or censoring ages). The results, with calculated MCF values and upper and lower 95% confidence limits, are shown next along with the graphical plot.