Loglogistic Distribution Example: Difference between revisions
Jump to navigation
Jump to search
[math]\displaystyle{ \overset{{}}{\mathop{\text{Table 10}\text{.3 - Test data}}}\, }[/math]
[math]\displaystyle{ \begin{matrix}
\text{Data point index} & \text{Last Inspected} & \text{State End time} \\
\text{1} & \text{105} & \text{106} \\
\text{2} & \text{197} & \text{200} \\
\text{3} & \text{297} & \text{301} \\
\text{4} & \text{330} & \text{335} \\
\text{5} & \text{393} & \text{401} \\
\text{6} & \text{423} & \text{426} \\
\text{7} & \text{460} & \text{468} \\
\text{8} & \text{569} & \text{570} \\
\text{9} & \text{675} & \text{680} \\
\text{10} & \text{884} & \text{889} \\
\end{matrix} }[/math]
(Created page with '{| class="FCK__ShowTableBorders" border="0" cellspacing="0" cellpadding="0" align="center"; style="width:100%;" |- | valign="middle" align="left" bgcolor=EEEDF7|[[Image:Weibull-E…') |
Chris Kahn (talk | contribs) No edit summary |
||
Line 21: | Line 21: | ||
\end{matrix}</math></center> | \end{matrix}</math></center> | ||
Set up the folio for times-to-failure data that includes interval and left censored data, then enter the data. The computed parameters for maximum likelihood are calculated to be: | |||
::<math>\begin{align} | ::<math>\begin{align} |
Revision as of 22:11, 3 May 2012
Determine the loglogistic parameter estimates for the data given in Table 10.3.
Set up the folio for times-to-failure data that includes interval and left censored data, then enter the data. The computed parameters for maximum likelihood are calculated to be:
- [math]\displaystyle{ \begin{align} & {{{\hat{\mu }}}^{\prime }}= & 5.9772 \\ & {{{\hat{\sigma }}}_{{{T}'}}}= & 0.3256 \end{align} }[/math]
For rank regression on [math]\displaystyle{ X\ \ : }[/math]
- [math]\displaystyle{ \begin{align} & \hat{\mu }= & 5.9281 \\ & \hat{\sigma }= & 0.3821 \end{align} }[/math]
For rank regression on [math]\displaystyle{ Y\ \ : }[/math]
- [math]\displaystyle{ \begin{align} & \hat{\mu }= & 5.9772 \\ & \hat{\sigma }= & 0.3256 \end{align} }[/math]