Template:Characteristics of the gamma distribution: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
Line 11: Line 11:
:• As  <math>t\to \infty ,\lambda (t)\to \tfrac{1}{{{e}^{\mu }}}.</math>  
:• As  <math>t\to \infty ,\lambda (t)\to \tfrac{1}{{{e}^{\mu }}}.</math>  


[[Image:BSpdf1.png|center|400px| ]]  
[[Image:BSpdf1.png|center|250px| ]]  


For  <math>k=1</math> :
For  <math>k=1</math> :
Line 21: Line 21:
:• The mode does not exist.
:• The mode does not exist.


[[Image:BSpdf2.png|center|400px| ]]  
[[Image:BSpdf2.png|center|250px| ]]  


For  <math>0<k<1</math> :
For  <math>0<k<1</math> :
Line 32: Line 32:
:• The mode does not exist.
:• The mode does not exist.


[[Image:BSpdf3.png|center|400px| ]]
[[Image:BSpdf3.png|center|250px| ]]

Revision as of 21:57, 25 April 2012

Characteristics of the Gamma Distribution

Some of the specific characteristics of the gamma distribution are the following:

For [math]\displaystyle{ k\gt 1 }[/math] :

• As [math]\displaystyle{ t\to 0,\infty }[/math] , [math]\displaystyle{ f(t)\to 0. }[/math]
[math]\displaystyle{ f(t) }[/math] increases from 0 to the mode value and decreases thereafter.
• If [math]\displaystyle{ k\le 2 }[/math] then [math]\displaystyle{ pdf }[/math] has one inflection point at [math]\displaystyle{ t={{e}^{\mu }}\sqrt{k-1}( }[/math] [math]\displaystyle{ \sqrt{k-1}+1). }[/math]
• If [math]\displaystyle{ k\gt 2 }[/math] then [math]\displaystyle{ pdf }[/math] has two inflection points for [math]\displaystyle{ t={{e}^{\mu }}\sqrt{k-1}( }[/math] [math]\displaystyle{ \sqrt{k-1}\pm 1). }[/math]
• For a fixed [math]\displaystyle{ k }[/math] , as [math]\displaystyle{ \mu }[/math] increases, the [math]\displaystyle{ pdf }[/math] starts to look more like a straight angle.
• As [math]\displaystyle{ t\to \infty ,\lambda (t)\to \tfrac{1}{{{e}^{\mu }}}. }[/math]
BSpdf1.png

For [math]\displaystyle{ k=1 }[/math] :

• Gamma becomes the exponential distribution.
• As [math]\displaystyle{ t\to 0 }[/math] , [math]\displaystyle{ f(T)\to \tfrac{1}{{{e}^{\mu }}}. }[/math]
• As [math]\displaystyle{ t\to \infty ,f(t)\to 0. }[/math]
• The [math]\displaystyle{ pdf }[/math] decreases monotonically and is convex.
[math]\displaystyle{ \lambda (t)\equiv \tfrac{1}{{{e}^{\mu }}} }[/math] . [math]\displaystyle{ \lambda (t) }[/math] is constant.
• The mode does not exist.
BSpdf2.png

For [math]\displaystyle{ 0\lt k\lt 1 }[/math] :

• As [math]\displaystyle{ t\to 0 }[/math] , [math]\displaystyle{ f(t)\to \infty . }[/math]
• As [math]\displaystyle{ t\to \infty ,f(t)\to 0. }[/math]
• As [math]\displaystyle{ t\to \infty ,\lambda (t)\to \tfrac{1}{{{e}^{\mu }}}. }[/math]
• The [math]\displaystyle{ pdf }[/math] decreases monotonically and is convex.
• As [math]\displaystyle{ \mu }[/math] increases, the [math]\displaystyle{ pdf }[/math] gets stretched out to the right and its height decreases, while maintaining its shape.
• As [math]\displaystyle{ \mu }[/math] decreases, the [math]\displaystyle{ pdf }[/math] shifts towards the left and its height increases.
• The mode does not exist.
BSpdf3.png