Template:Example: Simple-Actuarial Example: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
'''Simple-Actuarial Example'''
'''Actuarial Simple Example'''  
 
A group of 55 units are put on a life test during which the units are evaluated every 50 hours, with the following results:


A group of 55 units are put on a life test during which the units are evaluated every 50 hours. The results are:
<center><math>\begin{matrix}
<center><math>\begin{matrix}
   Start & End & Number of & Number of  \\
   Start & End & Number of & Number of  \\
Line 20: Line 19:
   600 & 650 & 2 & 1  \\
   600 & 650 & 2 & 1  \\
\end{matrix}</math></center>
\end{matrix}</math></center>
<br>


'''Solution'''


 
The reliability estimates&nbsp;can be obtained by expanding the data table to include the calculations used&nbsp;in the&nbsp;actuarial-simple method:  
'''Solution'''
 
The reliability estimates for the simple actuarial method can be obtained by expanding the data table to include terms used in calculation of the reliability estimates from the simple actuarial method:  
 
<center><math>\begin{matrix}
<center><math>\begin{matrix}
   Start & End & Number of & Number of & Available & {} & {}  \\
   Start & End & Number of & Number of & Available & {} & {}  \\
Line 44: Line 41:
   600 & 650 & 2 & 1 & 3 & 0.333 & 0.082  \\
   600 & 650 & 2 & 1 & 3 & 0.333 & 0.082  \\
\end{matrix}</math></center>
\end{matrix}</math></center>
As can be determined from the preceding table, the reliability estimates for the failure times are:  
As can be determined from the preceding table, the reliability estimates for the failure times are:  
<center><math>\begin{matrix}
<center><math>\begin{matrix}
   Failure Period & Reliability  \\
   Failure Period & Reliability  \\

Revision as of 22:12, 9 March 2012

Actuarial Simple Example

A group of 55 units are put on a life test during which the units are evaluated every 50 hours. The results are:

[math]\displaystyle{ \begin{matrix} Start & End & Number of & Number of \\ Time & Time & Failures, {{r}_{i}} & Suspensions, {{s}_{i}} \\ 0 & 50 & 2 & 4 \\ 50 & 100 & 0 & 5 \\ 100 & 150 & 2 & 2 \\ 150 & 200 & 3 & 5 \\ 200 & 250 & 2 & 1 \\ 250 & 300 & 1 & 2 \\ 300 & 350 & 2 & 1 \\ 350 & 400 & 3 & 3 \\ 400 & 450 & 3 & 4 \\ 450 & 500 & 1 & 2 \\ 500 & 550 & 2 & 1 \\ 550 & 600 & 1 & 0 \\ 600 & 650 & 2 & 1 \\ \end{matrix} }[/math]


Solution

The reliability estimates can be obtained by expanding the data table to include the calculations used in the actuarial-simple method:

[math]\displaystyle{ \begin{matrix} Start & End & Number of & Number of & Available & {} & {} \\ Time & Time & Failures, {{r}_{i}} & Suspensions, {{s}_{i}} & Units, {{n}_{i}} & 1-\tfrac{{{r}_{j}}}{{{n}_{j}}} & \prod\mathop{}_{}^{}1-\tfrac{{{r}_{j}}}{{{n}_{j}}} \\ 0 & 50 & 2 & 4 & 55 & 0.964 & 0.964 \\ 50 & 100 & 0 & 5 & 49 & 1.000 & 0.964 \\ 100 & 150 & 2 & 2 & 44 & 0.955 & 0.920 \\ 150 & 200 & 3 & 5 & 40 & 0.925 & 0.851 \\ 200 & 250 & 2 & 1 & 32 & 0.938 & 0.798 \\ 250 & 300 & 1 & 2 & 29 & 0.966 & 0.770 \\ 300 & 350 & 2 & 1 & 26 & 0.923 & 0.711 \\ 350 & 400 & 3 & 3 & 23 & 0.870 & 0.618 \\ 400 & 450 & 3 & 4 & 17 & 0.824 & 0.509 \\ 450 & 500 & 1 & 2 & 10 & 0.900 & 0.458 \\ 500 & 550 & 2 & 1 & 7 & 0.714 & 0.327 \\ 550 & 600 & 1 & 0 & 4 & 0.750 & 0.245 \\ 600 & 650 & 2 & 1 & 3 & 0.333 & 0.082 \\ \end{matrix} }[/math]

As can be determined from the preceding table, the reliability estimates for the failure times are:

[math]\displaystyle{ \begin{matrix} Failure Period & Reliability \\ End Time & Estimate \\ 50 & 96.4% \\ 150 & 92.0% \\ 200 & 85.1% \\ 250 & 79.8% \\ 300 & 77.0% \\ 350 & 71.1% \\ 400 & 61.8% \\ 450 & 50.9% \\ 500 & 45.8% \\ 550 & 32.7% \\ 600 & 24.5% \\ 650 & 8.2% \\ \end{matrix} }[/math]