Template:Example: Standard Actuarial Example: Difference between revisions
Jump to navigation
Jump to search
[math]\displaystyle{ \begin{matrix}
Start & End & Number of & Number of & Adjusted & {} & {} \\
Time & Time & Failures, {{r}_{i}} & Suspensions, {{s}_{i}} & Units, n_{i}^{\prime } & 1-\tfrac{{{r}_{j}}}{n_{j}^{\prime }} & \mathop{}_{}^{}1-\tfrac{{{r}_{j}}}{n_{j}^{\prime }} \\
0 & 50 & 2 & 4 & 53 & 0.962 & 0.962 \\
50 & 100 & 0 & 5 & 46.5 & 1.000 & 0.962 \\
100 & 150 & 2 & 2 & 43 & 0.953 & 0.918 \\
150 & 200 & 3 & 5 & 37.5 & 0.920 & 0.844 \\
200 & 250 & 2 & 1 & 31.5 & 0.937 & 0.791 \\
250 & 300 & 1 & 2 & 28 & 0.964 & 0.762 \\
300 & 350 & 2 & 1 & 25.5 & 0.922 & 0.702 \\
350 & 400 & 3 & 3 & 21.5 & 0.860 & 0.604 \\
400 & 450 & 3 & 4 & 15 & 0.800 & 0.484 \\
450 & 500 & 1 & 2 & 9 & 0.889 & 0.430 \\
500 & 550 & 2 & 1 & 6.5 & 0.692 & 0.298 \\
550 & 600 & 1 & 0 & 4 & 0.750 & 0.223 \\
600 & 650 & 2 & 1 & 2.5 & 0.200 & 0.045 \\
\end{matrix} }[/math]
[math]\displaystyle{ \begin{matrix}
Failure Period & Reliability \\
End Time & Estimate \\
50 & 96.2% \\
150 & 91.8% \\
200 & 84.4% \\
250 & 79.1% \\
300 & 76.2% \\
350 & 70.2% \\
400 & 60.4% \\
450 & 48.4% \\
500 & 43.0% \\
550 & 29.8% \\
600 & 22.3% \\
650 & 4.5% \\
\end{matrix} }[/math]
(Created page with ''''Standard Actuarial Example''' Find reliability estimates for the data in Example 10 using the standard actuarial method. '''Solution''' The solution to this example is simi…') |
No edit summary |
||
Line 27: | Line 27: | ||
As can be determined from the preceding table, the reliability estimates for the failure times are: | As can be determined from the preceding table, the reliability estimates for the failure times are: | ||
<center><math>\begin{matrix} | |||
Failure Period & Reliability \\ | |||
End Time & Estimate \\ | |||
50 & 96.2% \\ | |||
150 & 91.8% \\ | |||
200 & 84.4% \\ | |||
250 & 79.1% \\ | |||
300 & 76.2% \\ | |||
350 & 70.2% \\ | |||
400 & 60.4% \\ | |||
450 & 48.4% \\ | |||
500 & 43.0% \\ | |||
550 & 29.8% \\ | |||
600 & 22.3% \\ | |||
650 & 4.5% \\ | |||
\end{matrix}</math></center> |
Revision as of 19:06, 20 February 2012
Standard Actuarial Example
Find reliability estimates for the data in Example 10 using the standard actuarial method.
Solution
The solution to this example is similar to that of Example 10, with the exception of the inclusion of the [math]\displaystyle{ n_{i}^{\prime } }[/math] term, which is used in Eqn. (standact). Applying this equation to the data, we can generate the following table:
As can be determined from the preceding table, the reliability estimates for the failure times are: