Template:Logistic probability density function: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
Line 7: Line 7:
   z=\tfrac{t-\mu }{\sigma }  \\
   z=\tfrac{t-\mu }{\sigma }  \\


   -\infty <t<\infty ,\ \ -\infty <\mu <\infty ,\sigma >0  \\
   -\infty <t<\infty ,\ \ -\infty <\mu <\infty ,\sigma >0  \\ \\
\end{matrix}</math>
\end{matrix}</math>



Revision as of 22:59, 14 February 2012

Logistic Probability Density Function

The logistic [math]\displaystyle{ pdf }[/math] is given by:

[math]\displaystyle{ \begin{matrix} f(t)=\tfrac{{{e}^{z}}}{\sigma {{(1+{{e}^{z}})}^{2}}} \\ \\ z=\tfrac{t-\mu }{\sigma } \\ -\infty \lt t\lt \infty ,\ \ -\infty \lt \mu \lt \infty ,\sigma \gt 0 \\ \\ \end{matrix} }[/math]

where:

[math]\displaystyle{ \begin{align} \mu = & \text{location parameter (also denoted as }\overline{T}) \\ \sigma = & \text{scale parameter} \end{align} }[/math]