Template:Logistic probability density function: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
Line 3: Line 3:


::<math>\begin{matrix}
::<math>\begin{matrix}
   f(t)=\tfrac{{{e}^{z}}}{\sigma {{(1+{{e}^{z}})}^{2}}}  \\
   f(t)=\tfrac{{{e}^{z}}}{\sigma {{(1+{{e}^{z}})}^{2}}}  \\ \\


   z=\tfrac{t-\mu }{\sigma }  \\
   z=\tfrac{t-\mu }{\sigma }  \\

Revision as of 22:58, 14 February 2012

Logistic Probability Density Function

The logistic [math]\displaystyle{ pdf }[/math] is given by:

[math]\displaystyle{ \begin{matrix} f(t)=\tfrac{{{e}^{z}}}{\sigma {{(1+{{e}^{z}})}^{2}}} \\ \\ z=\tfrac{t-\mu }{\sigma } \\ -\infty \lt t\lt \infty ,\ \ -\infty \lt \mu \lt \infty ,\sigma \gt 0 \\ \end{matrix} }[/math]

where:

[math]\displaystyle{ \begin{align} \mu = & \text{location parameter (also denoted as }\overline{T}) \\ \sigma = & \text{scale parameter} \end{align} }[/math]