Template:Logistic probability density function: Difference between revisions
Jump to navigation
Jump to search
Line 3: | Line 3: | ||
::<math>\begin{matrix} | ::<math>\begin{matrix} | ||
f(t)=\tfrac{{{e}^{z}}}{\sigma {{(1+{{e}^{z}})}^{2}}} \\ | f(t)=\tfrac{{{e}^{z}}}{\sigma {{(1+{{e}^{z}})}^{2}}} \\ \\ | ||
z=\tfrac{t-\mu }{\sigma } \\ | z=\tfrac{t-\mu }{\sigma } \\ |
Revision as of 22:58, 14 February 2012
Logistic Probability Density Function
The logistic [math]\displaystyle{ pdf }[/math] is given by:
- [math]\displaystyle{ \begin{matrix} f(t)=\tfrac{{{e}^{z}}}{\sigma {{(1+{{e}^{z}})}^{2}}} \\ \\ z=\tfrac{t-\mu }{\sigma } \\ -\infty \lt t\lt \infty ,\ \ -\infty \lt \mu \lt \infty ,\sigma \gt 0 \\ \end{matrix} }[/math]
where:
- [math]\displaystyle{ \begin{align} \mu = & \text{location parameter (also denoted as }\overline{T}) \\ \sigma = & \text{scale parameter} \end{align} }[/math]