Template:Logistic reliability function: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
Line 1: Line 1:
==The Logistic Reliability Function==
==The Logistic Reliability Function==
The reliability for a mission of time  <math>T</math> , starting at age 0, for the logistic distribution is determined by:
The reliability for a mission of time  <math>t</math> , starting at age 0, for the logistic distribution is determined by:


::<math>R(T)=\int_{T}^{\infty }f(t)dt</math>
::<math>R(t)=\int_{t}^{\infty }f(t)dt</math>


:or:
or:


::<math>R(T)=\frac{1}{1+{{e}^{z}}}</math>
::<math>R(t)=\frac{1}{1+{{e}^{z}}}</math>


The unreliability function is:
The unreliability function is:
Line 12: Line 12:
::<math>F=\frac{{{e}^{z}}}{1+{{e}^{z}}}</math>
::<math>F=\frac{{{e}^{z}}}{1+{{e}^{z}}}</math>


:where:
where:


::<math>z=\frac{T-\mu }{\sigma }</math>
::<math>z=\frac{t-\mu }{\sigma }</math>

Revision as of 23:01, 14 February 2012

The Logistic Reliability Function

The reliability for a mission of time [math]\displaystyle{ t }[/math] , starting at age 0, for the logistic distribution is determined by:

[math]\displaystyle{ R(t)=\int_{t}^{\infty }f(t)dt }[/math]

or:

[math]\displaystyle{ R(t)=\frac{1}{1+{{e}^{z}}} }[/math]

The unreliability function is:

[math]\displaystyle{ F=\frac{{{e}^{z}}}{1+{{e}^{z}}} }[/math]

where:

[math]\displaystyle{ z=\frac{t-\mu }{\sigma } }[/math]