Template:Eyring-ex mean: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
Line 7: Line 7:
   & \overline{T}= & \int_{0}^{\infty }t\cdot f(t,V)dt=\int_{0}^{\infty }t\cdot V{{e}^{\left( A-\tfrac{B}{V} \right)}}{{e}^{-tV{{e}^{\left( A-\tfrac{B}{V} \right)}}}}dt =\  \frac{1}{V}{{e}^{-\left( A-\tfrac{B}{V} \right)}}   
   & \overline{T}= & \int_{0}^{\infty }t\cdot f(t,V)dt=\int_{0}^{\infty }t\cdot V{{e}^{\left( A-\tfrac{B}{V} \right)}}{{e}^{-tV{{e}^{\left( A-\tfrac{B}{V} \right)}}}}dt =\  \frac{1}{V}{{e}^{-\left( A-\tfrac{B}{V} \right)}}   
\end{align}</math>
\end{align}</math>
<br>

Revision as of 23:41, 27 February 2012

Mean or MTTF


The mean, [math]\displaystyle{ \overline{T}, }[/math] or Mean Time To Failure (MTTF) for the Eyring-exponential is given by:


[math]\displaystyle{ \begin{align} & \overline{T}= & \int_{0}^{\infty }t\cdot f(t,V)dt=\int_{0}^{\infty }t\cdot V{{e}^{\left( A-\tfrac{B}{V} \right)}}{{e}^{-tV{{e}^{\left( A-\tfrac{B}{V} \right)}}}}dt =\ \frac{1}{V}{{e}^{-\left( A-\tfrac{B}{V} \right)}} \end{align} }[/math]