Template:Acb on reliability: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
Line 9: Line 9:


<br>
<br>
where  <math>{{m}_{U}}</math>  and  <math>{{m}_{L}}</math>  are estimated using Eqns. (ArrhuUpper) and (ArrhuLower).
where  <math>{{m}_{U}}</math>  and  <math>{{m}_{L}}</math>  are estimated estimated by:
 
<br>
::<math>\begin{align}
& {{m}_{U}}= \widehat{m}\cdot {{e}^{\tfrac{{{K}_{\alpha }}\sqrt{Var(\widehat{m})}}{\widehat{m}}}} \\
& {{m}_{L}}= \widehat{m}\cdot {{e}^{-\tfrac{{{K}_{\alpha }}\sqrt{Var(\widehat{m})}}{\widehat{m}}}} 
\end{align}</math>
 
<br>
<br>

Revision as of 00:58, 14 February 2012

Confidence Bounds on Reliability


The bounds on reliability for any given time, [math]\displaystyle{ T }[/math] , are estimated by:

[math]\displaystyle{ \begin{align} & {{R}_{U}}(T)= & {{e}^{-\tfrac{T}{{{m}_{U}}}}} \\ & {{R}_{L}}(T)= & {{e}^{-\tfrac{T}{{{m}_{L}}}}} \end{align} }[/math]


where [math]\displaystyle{ {{m}_{U}} }[/math] and [math]\displaystyle{ {{m}_{L}} }[/math] are estimated estimated by:


[math]\displaystyle{ \begin{align} & {{m}_{U}}= \widehat{m}\cdot {{e}^{\tfrac{{{K}_{\alpha }}\sqrt{Var(\widehat{m})}}{\widehat{m}}}} \\ & {{m}_{L}}= \widehat{m}\cdot {{e}^{-\tfrac{{{K}_{\alpha }}\sqrt{Var(\widehat{m})}}{\widehat{m}}}} \end{align} }[/math]