Template:Acb on time: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
Line 11: Line 11:
<br>
<br>
::<math>\begin{align}
::<math>\begin{align}
   & {{T}_{U}}= & -{{m}_{U}}\cdot \ln (R) \\  
   & {{T}_{U}}= -{{m}_{U}}\cdot \ln (R) \\  
  & {{T}_{L}}= & -{{m}_{L}}\cdot \ln (R)   
  & {{T}_{L}}= -{{m}_{L}}\cdot \ln (R)   
\end{align}</math>
\end{align}</math>




where  <math>{{m}_{U}}</math>  and  <math>{{m}_{L}}</math>  are estimated using Eqns. (ArrhuUpper) and (ArrhuLower).
where  <math>{{m}_{U}}</math>  and  <math>{{m}_{L}}</math>  are estimated using Eqns. (ArrhuUpper) and (ArrhuLower).

Revision as of 00:59, 14 February 2012

Confidence Bounds on Time


The bounds on time (ML estimate of time) for a given reliability are estimated by first solving the reliability function with respect to time:


[math]\displaystyle{ \widehat{T}=-\widehat{m}\cdot \ln (R) }[/math]


The corresponding confidence bounds are then estimated from:


[math]\displaystyle{ \begin{align} & {{T}_{U}}= -{{m}_{U}}\cdot \ln (R) \\ & {{T}_{L}}= -{{m}_{L}}\cdot \ln (R) \end{align} }[/math]


where [math]\displaystyle{ {{m}_{U}} }[/math] and [math]\displaystyle{ {{m}_{L}} }[/math] are estimated using Eqns. (ArrhuUpper) and (ArrhuLower).