Template:Example: Lognormal General Example Interval Data: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 4: Line 4:
{|align="center" border=1 cellspacing=1  
{|align="center" border=1 cellspacing=1  
|-
|-
|colspan="3" style="text-align:center"| Table 9.3- Non-Grouped Data Times-to-Failure with intervals (lnterval and left censored)
|colspan="3" style="text-align:center"| Table 3- Non-Grouped Data Times-to-Failure with intervals (lnterval and left censored)
|-  
|-  
!Data point index
!Data point index

Revision as of 17:03, 2 March 2012

Lognormal Distribution General Example Interval Data

Determine the lognormal parameter estimates for the data given in Table below.

Table 3- Non-Grouped Data Times-to-Failure with intervals (lnterval and left censored)
Data point index Last Inspected State End Time
1 30 32
2 32 35
3 35 37
4 37 40
5 42 42
6 45 45
7 50 50
8 55 55

Solution

This is a sequence of interval times-to-failure where the intervals vary substantially in length. Using Weibull++, the computed parameters for maximum likelihood are calculated to be:

[math]\displaystyle{ \begin{align} & {{{\hat{\mu }}}^{\prime }}= & 3.64 \\ & {{{\hat{\sigma' }}}}= & 0.18 \end{align} }[/math]


For rank regression on [math]\displaystyle{ X\ \ : }[/math]

[math]\displaystyle{ \begin{align} & {{{\hat{\mu }}}^{\prime }}= & 3.64 \\ & {{{\hat{\sigma' }}}}= & 0.17 \end{align} }[/math]


For rank regression on [math]\displaystyle{ Y\ \ : }[/math]

[math]\displaystyle{ \begin{align} & {{{\hat{\mu }}}^{\prime }}= & 3.64 \\ & {{{\hat{\sigma' }}}}= & 0.21 \end{align} }[/math]