Template:Lognormal distribution bayesian confidence bounds: Difference between revisions
No edit summary |
|||
Line 9: | Line 9: | ||
:where: | :where: | ||
::<math>\varphi ({{\sigma | ::<math>\varphi ({{\sigma ‘}})</math> is <math>\tfrac{1}{{{\sigma ‘}}}</math> , non-informative prior of <math>{{\sigma ‘}}</math> . | ||
<math>\varphi ({\mu }')</math> is an uniform distribution from - <math>\infty </math> to + <math>\infty </math> , non-informative prior of <math>{\mu }'</math> . | <math>\varphi ({\mu }')</math> is an uniform distribution from - <math>\infty </math> to + <math>\infty </math> , non-informative prior of <math>{\mu }'</math> . | ||
With the above prior distributions, <math>f({\mu }'|Data)</math> can be rewritten as: | With the above prior distributions, <math>f({\mu }'|Data)</math> can be rewritten as: | ||
::<math>f({\mu }'|Data)=\frac{\int_{0}^{\infty }L(Data|{\mu }',{{\sigma | ::<math>f({\mu }'|Data)=\frac{\int_{0}^{\infty }L(Data|{\mu }',{{\sigma ‘}})\tfrac{1}{{{\sigma ‘}}}d{{\sigma ‘}}}{\int_{0}^{\infty }\int_{-\infty }^{\infty }L(Data|{\mu }',{{\sigma ‘}})\tfrac{1}{{{\sigma ‘}}}d{\mu }'d{{\sigma ‘}}}</math> | ||
Line 35: | Line 35: | ||
The same method can be used to obtained the bounds of <math>{{\sigma | The same method can be used to obtained the bounds of <math>{{\sigma ‘}}</math> . | ||
====Bounds on Time (Type 1)==== | ====Bounds on Time (Type 1)==== | ||
Line 41: | Line 41: | ||
::<math>\ln T={\mu }'+{{\sigma | ::<math>\ln T={\mu }'+{{\sigma ‘}}{{\Phi }^{-1}}(1-R)</math> | ||
Line 47: | Line 47: | ||
::<math>CL=\underset{}{\overset{}{\mathop{\Pr }}}\,(\ln T\le \ln {{T}_{U}})=\underset{}{\overset{}{\mathop{\Pr }}}\,({\mu }'+{{\sigma | ::<math>CL=\underset{}{\overset{}{\mathop{\Pr }}}\,(\ln T\le \ln {{T}_{U}})=\underset{}{\overset{}{\mathop{\Pr }}}\,({\mu }'+{{\sigma ‘}}{{\Phi }^{-1}}(1-R)\le \ln {{T}_{U}})</math> | ||
Line 53: | Line 53: | ||
::<math>CL=\underset{}{\overset{}{\mathop{\Pr }}}\,({\mu }'\le \ln {{T}_{U}}-{{\sigma | ::<math>CL=\underset{}{\overset{}{\mathop{\Pr }}}\,({\mu }'\le \ln {{T}_{U}}-{{\sigma ‘}}{{\Phi }^{-1}}(1-R)</math> | ||
Line 59: | Line 59: | ||
::<math>CL=\frac{\int_{0}^{\infty }\int_{-\infty }^{\ln {{T}_{U}}-{{\sigma | ::<math>CL=\frac{\int_{0}^{\infty }\int_{-\infty }^{\ln {{T}_{U}}-{{\sigma ‘}}{{\Phi }^{-1}}(1-R)}L({{\sigma ‘}},{\mu }')\tfrac{1}{{{\sigma ‘}}}d{\mu }'d{{\sigma ‘}}}{\int_{0}^{\infty }\int_{-\infty }^{\infty }L({{\sigma ‘}},{\mu }')\tfrac{1}{{{\sigma ‘}}}d{\mu }'d{{\sigma ‘}}}</math> | ||
Line 70: | Line 70: | ||
::<math>CL=\underset{}{\overset{}{\mathop{\Pr }}}\,(R\le {{R}_{U}})=\underset{}{\overset{}{\mathop{\Pr }}}\,({\mu }'\le \ln T-{{\sigma | ::<math>CL=\underset{}{\overset{}{\mathop{\Pr }}}\,(R\le {{R}_{U}})=\underset{}{\overset{}{\mathop{\Pr }}}\,({\mu }'\le \ln T-{{\sigma ‘}}{{\Phi }^{-1}}(1-{{R}_{U}}))</math> | ||
Line 76: | Line 76: | ||
::<math>CL=\frac{\int_{0}^{\infty }\int_{-\infty }^{\ln T-{{\sigma | ::<math>CL=\frac{\int_{0}^{\infty }\int_{-\infty }^{\ln T-{{\sigma ‘}}{{\Phi }^{-1}}(1-{{R}_{U}})}L({{\sigma ‘}},{\mu }')\tfrac{1}{{{\sigma ‘}}}d{\mu }'d{{\sigma ‘}}}{\int_{0}^{\infty }\int_{-\infty }^{\infty }L({{\sigma ‘}},{\mu }')\tfrac{1}{{{\sigma ‘}}}d{\mu }'d{{\sigma ‘}}}</math> | ||
Line 82: | Line 82: | ||
'''Example 8:''' | '''Example 8:''' | ||
{{Example: Lognormal | {{Example: Lognormal Distr |
Revision as of 23:31, 13 February 2012
Bayesian Confidence Bounds
Bounds on Parameters
From Chapter Parameter Estimation, we know that the marginal distribution of parameter [math]\displaystyle{ {\mu }' }[/math] is:
- [math]\displaystyle{ \begin{align} f({\mu }'|Data)= & \int_{0}^{\infty }f({\mu }',{{\sigma'}}|Data)d{{\sigma'}} \\ = & \frac{\int_{0}^{\infty }L(Data|{\mu }',{{\sigma ‘}})\varphi ({\mu }')\varphi ({{\sigma ‘}})d{{\sigma ‘}}}{\int_{0}^{\infty }\int_{-\infty }^{\infty }L(Data|{\mu }',{{\sigma ‘}})\varphi ({\mu }')\varphi ({{\sigma ‘}})d{\mu }'d{{\sigma ‘}}} \end{align} }[/math]
- where:
- [math]\displaystyle{ \varphi ({{\sigma ‘}}) }[/math] is [math]\displaystyle{ \tfrac{1}{{{\sigma ‘}}} }[/math] , non-informative prior of [math]\displaystyle{ {{\sigma ‘}} }[/math] .
[math]\displaystyle{ \varphi ({\mu }') }[/math] is an uniform distribution from - [math]\displaystyle{ \infty }[/math] to + [math]\displaystyle{ \infty }[/math] , non-informative prior of [math]\displaystyle{ {\mu }' }[/math] . With the above prior distributions, [math]\displaystyle{ f({\mu }'|Data) }[/math] can be rewritten as:
- [math]\displaystyle{ f({\mu }'|Data)=\frac{\int_{0}^{\infty }L(Data|{\mu }',{{\sigma ‘}})\tfrac{1}{{{\sigma ‘}}}d{{\sigma ‘}}}{\int_{0}^{\infty }\int_{-\infty }^{\infty }L(Data|{\mu }',{{\sigma ‘}})\tfrac{1}{{{\sigma ‘}}}d{\mu }'d{{\sigma ‘}}} }[/math]
The one-sided upper bound of [math]\displaystyle{ {\mu }' }[/math] is:
- [math]\displaystyle{ CL=P({\mu }'\le \mu _{U}^{\prime })=\int_{-\infty }^{\mu _{U}^{\prime }}f({\mu }'|Data)d{\mu }' }[/math]
The one-sided lower bound of [math]\displaystyle{ {\mu }' }[/math] is:
- [math]\displaystyle{ 1-CL=P({\mu }'\le \mu _{L}^{\prime })=\int_{-\infty }^{\mu _{L}^{\prime }}f({\mu }'|Data)d{\mu }' }[/math]
The two-sided bounds of [math]\displaystyle{ {\mu }' }[/math] is:
- [math]\displaystyle{ CL=P(\mu _{L}^{\prime }\le {\mu }'\le \mu _{U}^{\prime })=\int_{\mu _{L}^{\prime }}^{\mu _{U}^{\prime }}f({\mu }'|Data)d{\mu }' }[/math]
The same method can be used to obtained the bounds of [math]\displaystyle{ {{\sigma ‘}} }[/math] .
Bounds on Time (Type 1)
The reliable life of the lognormal distribution is:
- [math]\displaystyle{ \ln T={\mu }'+{{\sigma ‘}}{{\Phi }^{-1}}(1-R) }[/math]
The one-sided upper on time bound is given by:
- [math]\displaystyle{ CL=\underset{}{\overset{}{\mathop{\Pr }}}\,(\ln T\le \ln {{T}_{U}})=\underset{}{\overset{}{\mathop{\Pr }}}\,({\mu }'+{{\sigma ‘}}{{\Phi }^{-1}}(1-R)\le \ln {{T}_{U}}) }[/math]
Eqn. (1SBT) can be rewritten in terms of [math]\displaystyle{ {\mu }' }[/math] as:
- [math]\displaystyle{ CL=\underset{}{\overset{}{\mathop{\Pr }}}\,({\mu }'\le \ln {{T}_{U}}-{{\sigma ‘}}{{\Phi }^{-1}}(1-R) }[/math]
From the posterior distribution of [math]\displaystyle{ {\mu }' }[/math] get:
- [math]\displaystyle{ CL=\frac{\int_{0}^{\infty }\int_{-\infty }^{\ln {{T}_{U}}-{{\sigma ‘}}{{\Phi }^{-1}}(1-R)}L({{\sigma ‘}},{\mu }')\tfrac{1}{{{\sigma ‘}}}d{\mu }'d{{\sigma ‘}}}{\int_{0}^{\infty }\int_{-\infty }^{\infty }L({{\sigma ‘}},{\mu }')\tfrac{1}{{{\sigma ‘}}}d{\mu }'d{{\sigma ‘}}} }[/math]
Eqn. (1SCBT) is solved w.r.t. [math]\displaystyle{ {{T}_{U}}. }[/math] The same method can be applied for one-sided lower bounds and two-sided bounds on Time.
Bounds on Reliability (Type 2)
The one-sided upper bound on reliability is given by:
- [math]\displaystyle{ CL=\underset{}{\overset{}{\mathop{\Pr }}}\,(R\le {{R}_{U}})=\underset{}{\overset{}{\mathop{\Pr }}}\,({\mu }'\le \ln T-{{\sigma ‘}}{{\Phi }^{-1}}(1-{{R}_{U}})) }[/math]
From the posterior distribution of [math]\displaystyle{ {\mu }' }[/math] is:
- [math]\displaystyle{ CL=\frac{\int_{0}^{\infty }\int_{-\infty }^{\ln T-{{\sigma ‘}}{{\Phi }^{-1}}(1-{{R}_{U}})}L({{\sigma ‘}},{\mu }')\tfrac{1}{{{\sigma ‘}}}d{\mu }'d{{\sigma ‘}}}{\int_{0}^{\infty }\int_{-\infty }^{\infty }L({{\sigma ‘}},{\mu }')\tfrac{1}{{{\sigma ‘}}}d{\mu }'d{{\sigma ‘}}} }[/math]
Eqn. (1SCBR) is solved w.r.t. [math]\displaystyle{ {{R}_{U}}. }[/math] The same method is used to calculate the one-sided lower bounds and two-sided bounds on Reliability.
Example 8: {{Example: Lognormal Distr