Template:Aw cdf and rf: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
Line 1: Line 1:
====The  <math>cdf</math>  and the Reliability Function====
====The  <math>cdf</math>  and the Reliability Function====
The  <math>cdf</math>  of the 2-parameter Weibull distribution is given by:
The  <math>cdf</math>  of the 2-parameter Weibull distribution is given by:


::<math>F(T)=1-{{e}^{-{{\left( \tfrac{T}{\eta } \right)}^{\beta }}}}</math>
::<math>F(T)=1-{{e}^{-{{\left( \tfrac{T}{\eta } \right)}^{\beta }}}}</math>


The Weibull reliability function is given by:  
The Weibull reliability function is given by:  


::<math>\begin{align}
::<math>\begin{align}
   R(T)&= & 1-F(t) = \ {{e}^{-{{\left( \tfrac{T}{\eta } \right)}^{\beta }}}}   
   R(T)&= & 1-F(t) = \ {{e}^{-{{\left( \tfrac{T}{\eta } \right)}^{\beta }}}}   
\end{align}</math>
\end{align}</math>
<br>

Revision as of 22:33, 27 February 2012

The [math]\displaystyle{ cdf }[/math] and the Reliability Function

The [math]\displaystyle{ cdf }[/math] of the 2-parameter Weibull distribution is given by:


[math]\displaystyle{ F(T)=1-{{e}^{-{{\left( \tfrac{T}{\eta } \right)}^{\beta }}}} }[/math]


The Weibull reliability function is given by:


[math]\displaystyle{ \begin{align} R(T)&= & 1-F(t) = \ {{e}^{-{{\left( \tfrac{T}{\eta } \right)}^{\beta }}}} \end{align} }[/math]