Template:Example: Lognormal General Example Interval Data: Difference between revisions
Jump to navigation
Jump to search
(Created page with ''''Lognormal Distribution General Example Interval Data''' Determine the lognormal parameter estimates for the data given in Table below. {|align="center" border=1 cellspacing=1…') |
No edit summary |
||
Line 4: | Line 4: | ||
{|align="center" border=1 cellspacing=1 | {|align="center" border=1 cellspacing=1 | ||
|- | |- | ||
|colspan="3" style="text-align:center"| Table - Non-Grouped Data Times-to-Failure with intervals (lnterval and left censored) | |colspan="3" style="text-align:center"| Table 9.3- Non-Grouped Data Times-to-Failure with intervals (lnterval and left censored) | ||
|- | |- | ||
!Data point index | !Data point index | ||
Line 33: | Line 33: | ||
::<math>\begin{align} | ::<math>\begin{align} | ||
& {{{\hat{\mu }}}^{\prime }}= & 3.64 \\ | & {{{\hat{\mu }}}^{\prime }}= & 3.64 \\ | ||
& {{{\hat{\sigma } | & {{{\hat{\sigma' }}}}= & 0.18 | ||
\end{align}</math> | \end{align}</math> | ||
Line 41: | Line 41: | ||
::<math>\begin{align} | ::<math>\begin{align} | ||
& {{{\hat{\mu }}}^{\prime }}= & 3.64 \\ | & {{{\hat{\mu }}}^{\prime }}= & 3.64 \\ | ||
& {{{\hat{\sigma } | & {{{\hat{\sigma' }}}}= & 0.17 | ||
\end{align}</math> | \end{align}</math> | ||
Line 49: | Line 49: | ||
::<math>\begin{align} | ::<math>\begin{align} | ||
& {{{\hat{\mu }}}^{\prime }}= & 3.64 \\ | & {{{\hat{\mu }}}^{\prime }}= & 3.64 \\ | ||
& {{{\hat{\sigma } | & {{{\hat{\sigma' }}}}= & 0.21 | ||
\end{align}</math> | \end{align}</math> |
Revision as of 23:42, 13 February 2012
Lognormal Distribution General Example Interval Data
Determine the lognormal parameter estimates for the data given in Table below.
Table 9.3- Non-Grouped Data Times-to-Failure with intervals (lnterval and left censored) | ||
Data point index | Last Inspected | State End Time |
---|---|---|
1 | 30 | 32 |
2 | 32 | 35 |
3 | 35 | 37 |
4 | 37 | 40 |
5 | 42 | 42 |
6 | 45 | 45 |
7 | 50 | 50 |
8 | 55 | 55 |
Solution
This is a sequence of interval times-to-failure where the intervals vary substantially in length. Using Weibull++, the computed parameters for maximum likelihood are calculated to be:
- [math]\displaystyle{ \begin{align} & {{{\hat{\mu }}}^{\prime }}= & 3.64 \\ & {{{\hat{\sigma' }}}}= & 0.18 \end{align} }[/math]
For rank regression on [math]\displaystyle{ X\ \ : }[/math]
- [math]\displaystyle{ \begin{align} & {{{\hat{\mu }}}^{\prime }}= & 3.64 \\ & {{{\hat{\sigma' }}}}= & 0.17 \end{align} }[/math]
For rank regression on [math]\displaystyle{ Y\ \ : }[/math]
- [math]\displaystyle{ \begin{align} & {{{\hat{\mu }}}^{\prime }}= & 3.64 \\ & {{{\hat{\sigma' }}}}= & 0.21 \end{align} }[/math]