Template:Lognormal distribution probability density function: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 21: Line 21:
::<math>d{t}'=\frac{dt}{t}</math>
::<math>d{t}'=\frac{dt}{t}</math>


:Substitution yields:  
Substitution yields:  


::<math>\begin{align}
::<math>\begin{align}
Line 28: Line 28:
\end{align}</math>
\end{align}</math>


:where:  
where:  


::<math>f(t)\ge 0,T>0,-\infty <{\mu }'<\infty ,{{\sigma' }}>0</math>
::<math>f(t)\ge 0,t>0,-\infty <{\mu }'<\infty ,{{\sigma' }}>0</math>

Revision as of 16:13, 13 February 2012

Lognormal Probability Density Function

The lognormal distribution is a two-parameter distribution with parameters [math]\displaystyle{ {\mu }' }[/math] and [math]\displaystyle{ \sigma' }[/math] . The [math]\displaystyle{ pdf }[/math] for this distribution is given by:

[math]\displaystyle{ f({t}')=\frac{1}{{{\sigma' }}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{{{t}^{\prime }}-{\mu }'}{{{\sigma' }}} \right)}^{2}}}} }[/math]

where,

[math]\displaystyle{ {t}'=\ln (t) }[/math]. [math]\displaystyle{ t }[/math] values are the times-to-failure, and
[math]\displaystyle{ \mu'=\text{mean of the natural logarithms of the times-to-failure,} }[/math]
[math]\displaystyle{ \sigma'=\text{standard deviation of the natural logarithms of the times-to-failure} }[/math]

The lognormal [math]\displaystyle{ pdf }[/math] can be obtained, realizing that for equal probabilities under the normal and lognormal [math]\displaystyle{ pdf }[/math] s, incremental areas should also be equal, or:

[math]\displaystyle{ f(t)dt=f({t}')d{t}' }[/math]

Taking the derivative yields:

[math]\displaystyle{ d{t}'=\frac{dt}{t} }[/math]

Substitution yields:

[math]\displaystyle{ \begin{align} f(t)= & \frac{f({t}')}{t}, \\ f(t)= & \frac{1}{t\cdot {{\sigma' }}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{\text{ln}(t)-{\mu }'}{{{\sigma' }}} \right)}^{2}}}} \end{align} }[/math]

where:

[math]\displaystyle{ f(t)\ge 0,t\gt 0,-\infty \lt {\mu }'\lt \infty ,{{\sigma' }}\gt 0 }[/math]