Template:Example: Normal General Example Complete Data: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 3: Line 3:
Eight units are being reliability tested and the following is a table of their times-to-failure:
Eight units are being reliability tested and the following is a table of their times-to-failure:


 
{|border="1" align="center" style="border-collapse: collapse;" cellpadding="5" cellspacing="5"
{|align="center" border=1 cellspacing=1
|-
|-
|colspan="3" style="text-align:center"| Table - Non-Grouped Data ,for Example 12
|colspan="3" style="text-align:center"| Non-Grouped Data for Example 12
|-  
|-  
!Data point index
!Data point index
Line 38: Line 37:
  & {{{\hat{\sigma }}}_{T}}= & 18.57   
  & {{{\hat{\sigma }}}_{T}}= & 18.57   
\end{align}</math>
\end{align}</math>


For rank regression on x:  
For rank regression on x:  
Line 46: Line 44:
  & {{{\hat{\sigma }}}_{T}}= & 21.64   
  & {{{\hat{\sigma }}}_{T}}= & 21.64   
\end{align}</math>
\end{align}</math>


For rank regression on y:  
For rank regression on y:  

Revision as of 03:07, 8 August 2012

Normal Distribution General Example Complete Data

Eight units are being reliability tested and the following is a table of their times-to-failure:

Non-Grouped Data for Example 12
Data point index State F or S State End Time
1 F 2
2 F 5
3 F 11
4 F 23
5 F 29
6 F 37
7 F 43
8 F 59

Solution

This data set can be entered into Weibull++ by creating a Data Sheet appropriate for the entry of non-grouped times-to-failure data. The computed parameters for maximum likelihood are:

[math]\displaystyle{ \begin{align} & \widehat{\mu }= & 26.13 \\ & {{{\hat{\sigma }}}_{T}}= & 18.57 \end{align} }[/math]

For rank regression on x:

[math]\displaystyle{ \begin{align} & \widehat{\mu }= & 26.13 \\ & {{{\hat{\sigma }}}_{T}}= & 21.64 \end{align} }[/math]

For rank regression on y:

[math]\displaystyle{ \begin{align} & \widehat{\mu }= & 26.13 \\ & {{{\hat{\sigma }}}_{T}}= & 22.28. \end{align} }[/math]