Template:Example: Normal Distribution Likelihood Ratio Bound (Time): Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
(Created page with ''''Normal Distribution Likelihood Ratio Bound Example (Time)''' For the data given in Example 5, determine the two-sided 80% confidence bounds on the time estimate for a reliabi…')
 
No edit summary
Line 5: Line 5:
'''Solution'''
'''Solution'''


In this example, we are trying to determine the two-sided 80% confidence bounds on the time estimate of 31.637. This is accomplished by substituting  <math>R=0.40</math>  and  <math>\alpha =0.8</math>  into Eqn. (normliketr), and varying  <math>\sigma </math>  until the maximum and minimum values of  <math>t</math>  are found. The following table gives the values of  <math>t</math>  based on given values of  <math>\sigma </math> .
In this example, we are trying to determine the two-sided 80% confidence bounds on the time estimate of 31.637. This is accomplished by substituting  <math>R=0.40</math>  and  <math>\alpha =0.8</math>  into the likelihood ratio equation for the normal distribution, and varying  <math>\sigma </math>  until the maximum and minimum values of  <math>t</math>  are found. The following table gives the values of  <math>t</math>  based on given values of  <math>\sigma </math> .


[[Image:tabletbasedonsigma.gif|thumb|center|400px| ]]
[[Image:tabletbasedonsigma.gif|thumb|center|400px| ]]

Revision as of 22:18, 10 February 2012

Normal Distribution Likelihood Ratio Bound Example (Time)

For the data given in Example 5, determine the two-sided 80% confidence bounds on the time estimate for a reliability of 40%. The ML estimate for the time at [math]\displaystyle{ R(t)=40% }[/math] is 31.637.

Solution

In this example, we are trying to determine the two-sided 80% confidence bounds on the time estimate of 31.637. This is accomplished by substituting [math]\displaystyle{ R=0.40 }[/math] and [math]\displaystyle{ \alpha =0.8 }[/math] into the likelihood ratio equation for the normal distribution, and varying [math]\displaystyle{ \sigma }[/math] until the maximum and minimum values of [math]\displaystyle{ t }[/math] are found. The following table gives the values of [math]\displaystyle{ t }[/math] based on given values of [math]\displaystyle{ \sigma }[/math] .

Tabletbasedonsigma.gif

[math]\displaystyle{ }[/math]

This data set is represented graphically in the following contour plot:

Ovalplot.gif


As can be determined from the table, the lowest calculated value for [math]\displaystyle{ t }[/math] is 25.046, while the highest is 39.250. These represent the 80% confidence limits on the time at which reliability is equal to 40%.