ALTA ALTA Standard Folio Data IPL-Exponential: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 21: Line 21:
|-
|-
| valign="middle" | [http://reliawiki.com/index.php/Template:Ipl_exponential#IPL-Exponential IPL-Exponential]
| valign="middle" | [http://reliawiki.com/index.php/Template:Ipl_exponential#IPL-Exponential IPL-Exponential]
|-
|valign="middle | [http://reliawiki.com/index.php/Template:Example:IPL#IPL_Example See an example]


|}
|}

Revision as of 17:51, 14 February 2012

Webnotes-alta.png
Standard Folio Data IPL-Exponential
ALTA

IPL-Exponential

The IPL-exponential model can be derived by setting [math]\displaystyle{ m=L(V) }[/math] in Eqn. (inverse), yielding the following IPL-exponential [math]\displaystyle{ pdf }[/math] :
[math]\displaystyle{ f(t,V)=K{{V}^{n}}{{e}^{-K{{V}^{n}}t}} }[/math]
Note that this is a 2-parameter model. The failure rate (the parameter of the exponential distribution) of the model is simply [math]\displaystyle{ \lambda =K{{V}^{n}}, }[/math] and is only a function of stress.
IPL-exponential failure rate function at different stress levels.

IPL-Exponential
See an example



Docedit.png