ALTA ALTA Standard Folio Data Eyring-Exponential: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 32: Line 32:
|-
|-
| valign="middle" | [http://reliawiki.com/index.php/Template:Alta_a-e.e-e#Eyring-Exponential Get More Details...]
| valign="middle" | [http://reliawiki.com/index.php/Template:Alta_a-e.e-e#Eyring-Exponential Get More Details...]
 
|-
|valign="middle" | [http://reliawiki.com/index.php/Template:Example:Eyring#Eyring_Example See an example]
|}
|}
<br>  
<br>  


[[File:docedit.png|20px|right|link=http://www.reliawiki.com/index.php?title=ALTA_ALTA_Standard_Folio_Data_Eyring-Exponential&action=edit]]
[[File:docedit.png|20px|right|link=http://www.reliawiki.com/index.php?title=ALTA_ALTA_Standard_Folio_Data_Eyring-Exponential&action=edit]]

Revision as of 17:49, 14 February 2012

Webnotes-alta.png
Standard Folio Data Eyring-Exponential
ALTA

The [math]\displaystyle{ pdf }[/math] of the 1-parameter exponential distribution is given by:
[math]\displaystyle{ f(t)=\lambda \cdot {{e}^{-\lambda \cdot t}} }[/math]
It can be easily shown that the mean life for the 1-parameter exponential distribution (presented in detail in Chapter 5) is given by:
[math]\displaystyle{ \lambda =\frac{1}{m} }[/math]
thus:
[math]\displaystyle{ f(t)=\frac{1}{m}\cdot {{e}^{-\tfrac{t}{m}}} }[/math]
The Eyring-exponential model [math]\displaystyle{ pdf }[/math] can then be obtained by setting [math]\displaystyle{ m=L(V) }[/math] in Eqn. (eyring):
[math]\displaystyle{ m=L(V)=\frac{1}{V}{{e}^{-\left( A-\tfrac{B}{V} \right)}} }[/math]
and substituting for [math]\displaystyle{ m }[/math] in Eqn. (pdfexpm2):
[math]\displaystyle{ f(t,V)=V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}}{{e}^{-V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}}\cdot t}} }[/math]

Get More Details...
See an example


Docedit.png