ALTA ALTA Standard Folio Data Eyring-Lognormal: Difference between revisions
No edit summary |
No edit summary |
||
Line 36: | Line 36: | ||
<br> | <br> | ||
<math>{{e}^{{{\overline{T}}^{\prime }}}}=\frac{1}{V}{{e}^{-(A-\tfrac{B}{V})}}</math> | <math>{{e}^{{{\overline{T}}^{\prime }}}}=\frac{1}{V}{{e}^{-(A-\tfrac{B}{V})}}</math> | ||
<br> | <br> | ||
Thus: | Thus: |
Revision as of 21:51, 10 February 2012
Standard Folio Data Eyring-Lognormal |
ALTA |
The [math]\displaystyle{ pdf }[/math] of the lognormal distribution is given by:
• [math]\displaystyle{ {{\sigma }_{{{T}'}}}= }[/math] standard deviation of the natural logarithms of the times-to-failure.
[math]\displaystyle{ f(T,V)=\frac{1}{T\text{ }{{\sigma }_{{{T}'}}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{{T}'+\ln (V)+A-\tfrac{B}{V}}{{{\sigma }_{{{T}'}}}} \right)}^{2}}}} }[/math] |
Get More Details... |