Template:Normal probability density function: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
Line 3: Line 3:
The  <math>pdf</math>  of the normal distribution is given by:  
The  <math>pdf</math>  of the normal distribution is given by:  


::<math>f(t)=\frac{1}{{{\sigma}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{t-\mu }{{{\sigma }} \right)}^{2}}}}</math>
::<math>f(t)=\frac{1}{\sigma \sqrt{2\pi }}{{e}^{-\frac{1}{2}{{\left( \frac{t-\mu }{\sigma } \right)}^{2}}}}</math>


:where:  
where:  


<math>\mu= \text{mean of the normal times-to-faiure, also noted as}  \bar T </math>
<math>\mu= \text{mean of the normal times-to-faiure, also noted as}  \bar T </math>

Revision as of 17:55, 10 February 2012

Normal Probability Density Function

The [math]\displaystyle{ pdf }[/math] of the normal distribution is given by:

[math]\displaystyle{ f(t)=\frac{1}{\sigma \sqrt{2\pi }}{{e}^{-\frac{1}{2}{{\left( \frac{t-\mu }{\sigma } \right)}^{2}}}} }[/math]

where:

[math]\displaystyle{ \mu= \text{mean of the normal times-to-faiure, also noted as} \bar T }[/math]

[math]\displaystyle{ \theta=\text{standard deviation of the times-to-failure} }[/math]


It is a two-parameter distribution with parameters [math]\displaystyle{ \mu }[/math] (or [math]\displaystyle{ \bar{T} }[/math] ) and [math]\displaystyle{ {{\sigma }} }[/math] , i.e. the mean and the standard deviation, respectively.