Weibull++ Standard Folio Data 3P-Weibull: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 31: Line 31:
|  valign="middle" |
|  valign="middle" |
|-
|-
|  valign="middle" | [http://www.reliawiki.com/index.php/The_Weibull_Distribution The Weibull Distribution]
|  valign="middle" |See also [http://www.reliawiki.com/index.php/The_Weibull_Distribution The Weibull Distribution]
|-
|-
|valign="middle" |[http://reliawiki.com/index.php/Template:Example:3P_Weibull_Distribution See an example...]
|valign="middle" |See also [http://reliawiki.com/index.php/Template:Example:3P_Weibull_Distribution Weibull example...]
|}
|}
<br>
<br>


[[File:docedit.png|20px|right|link=http://www.reliawiki.com/index.php?title=Weibull%2B%2B_Standard_Folio_Data_3P-Weibull&action=edit]]
[[File:docedit.png|20px|right|link=http://www.reliawiki.com/index.php?title=Weibull%2B%2B_Standard_Folio_Data_3P-Weibull&action=edit]]

Revision as of 23:11, 17 February 2012

Webnotesbar.png

The Three-Parameter Weibull Distribution

The three-parameter Weibull pdf is given by:

[math]\displaystyle{ f(t)={ \frac{\beta }{\eta }}\left( {\frac{t-\gamma }{\eta }}\right) ^{\beta -1}e^{-\left( {\frac{t-\gamma }{\eta }}\right) ^{\beta }} }[/math]

where,

[math]\displaystyle{ f(t)\geq 0,\text{ }t\geq 0\text{ or }\gamma, }[/math]

[math]\displaystyle{ \beta\gt 0\ \,\! }[/math],

[math]\displaystyle{ \eta \gt 0 \,\! }[/math],

[math]\displaystyle{ -\infty \lt \gamma \lt +\infty \,\! }[/math]

and,

[math]\displaystyle{ \eta= \,\! }[/math] scale parameter, or characteristic life [math]\displaystyle{ \beta= \,\! }[/math] shape parameter (or slope),

[math]\displaystyle{ \gamma= \,\! }[/math] location parameter (or failure free life).

See also The Weibull Distribution
See also Weibull example...


Docedit.png