Template:Bayesian Confidence Bounds ED: Difference between revisions
Line 59: | Line 59: | ||
The one-sided upper bound on reliability is given by: | The one-sided upper bound on reliability is given by: | ||
::<math>CL=\underset{}{\overset{}{\mathop{\Pr }}}\,(R\le {{R}_{U}})=\underset{}{\overset{}{\mathop{\Pr }}}\,(\exp (-\lambda | ::<math>CL=\underset{}{\overset{}{\mathop{\Pr }}}\,(R\le {{R}_{U}})=\underset{}{\overset{}{\mathop{\Pr }}}\,(\exp (-\lambda t)\le {{R}_{U}})</math> | ||
The above equaation can be rewritten in terms of <math>\lambda </math> as: | The above equaation can be rewritten in terms of <math>\lambda </math> as: | ||
::<math>CL=\underset{}{\overset{}{\mathop{\Pr }}}\,(\frac{-\ln {{R}_{U}}}{ | ::<math>CL=\underset{}{\overset{}{\mathop{\Pr }}}\,(\frac{-\ln {{R}_{U}}}{t}\le \lambda )</math> | ||
Revision as of 01:14, 8 February 2012
Bayesian Confidence Bounds
Bounds on Parameters
From Chapter 5, we know that the posterior distribution of [math]\displaystyle{ \lambda }[/math] can be written as:
- [math]\displaystyle{ f(\lambda |Data)=\frac{L(Data|\lambda )\varphi (\lambda )}{\int_{0}^{\infty }L(Data|\lambda )\varphi (\lambda )d\lambda } }[/math]
where [math]\displaystyle{ \varphi (\lambda )=\tfrac{1}{\lambda } }[/math], is the non-informative prior of [math]\displaystyle{ \lambda }[/math].
With the above prior distribution, [math]\displaystyle{ f(\lambda |Data) }[/math] can be rewritten as:
- [math]\displaystyle{ f(\lambda |Data)=\frac{L(Data|\lambda )\tfrac{1}{\lambda }}{\int_{0}^{\infty }L(Data|\lambda )\tfrac{1}{\lambda }d\lambda } }[/math]
The one-sided upper bound of [math]\displaystyle{ \lambda }[/math] is:
- [math]\displaystyle{ CL=P(\lambda \le {{\lambda }_{U}})=\int_{0}^{{{\lambda }_{U}}}f(\lambda |Data)d\lambda }[/math]
The one-sided lower bound of [math]\displaystyle{ \lambda }[/math] is:
- [math]\displaystyle{ 1-CL=P(\lambda \le {{\lambda }_{L}})=\int_{0}^{{{\lambda }_{L}}}f(\lambda |Data)d\lambda }[/math]
The two-sided bounds of [math]\displaystyle{ \lambda }[/math] are:
- [math]\displaystyle{ CL=P({{\lambda }_{L}}\le \lambda \le {{\lambda }_{U}})=\int_{{{\lambda }_{L}}}^{{{\lambda }_{U}}}f(\lambda |Data)d\lambda }[/math]
Bounds on Time (Type 1)
The reliable life equation is:
- [math]\displaystyle{ t=\frac{-\ln R}{\lambda } }[/math]
For the one-sided upper bound on time we have:
- [math]\displaystyle{ CL=\underset{}{\overset{}{\mathop{\Pr }}}\,(t\le {{T}_{U}})=\underset{}{\overset{}{\mathop{\Pr }}}\,(\frac{-\ln R}{\lambda }\le {{T}_{U}}) }[/math]
The above equation can be rewritten in terms of [math]\displaystyle{ \lambda }[/math] as:
- [math]\displaystyle{ CL=\underset{}{\overset{}{\mathop{\Pr }}}\,(\frac{-\ln R}{{{t}_{U}}}\le \lambda ) }[/math]
From the above posterior distribuiton equation, we have:
- [math]\displaystyle{ CL=\frac{\int_{\tfrac{-\ln R}{{{t}_{U}}}}^{\infty }L(Data|\lambda )\tfrac{1}{\lambda }d\lambda }{\int_{0}^{\infty }L(Data|\lambda )\tfrac{1}{\lambda }d\lambda } }[/math]
The above equation is solved w.r.t. [math]\displaystyle{ {{t}_{U}}. }[/math] The same method is applied for one-sided lower and two-sided bounds on time.
Bounds on Reliability (Type 2)
The one-sided upper bound on reliability is given by:
- [math]\displaystyle{ CL=\underset{}{\overset{}{\mathop{\Pr }}}\,(R\le {{R}_{U}})=\underset{}{\overset{}{\mathop{\Pr }}}\,(\exp (-\lambda t)\le {{R}_{U}}) }[/math]
The above equaation can be rewritten in terms of [math]\displaystyle{ \lambda }[/math] as:
- [math]\displaystyle{ CL=\underset{}{\overset{}{\mathop{\Pr }}}\,(\frac{-\ln {{R}_{U}}}{t}\le \lambda ) }[/math]
From the equation for posterior distribution we have:
- [math]\displaystyle{ CL=\frac{\int_{\tfrac{-\ln {{R}_{U}}}{t}}^{\infty }L(Data|\lambda )\tfrac{1}{\lambda }d\lambda }{\int_{0}^{\infty }L(Data|\lambda )\tfrac{1}{\lambda }d\lambda } }[/math]
The above equation is solved w.r.t. [math]\displaystyle{ {{R}_{U}}. }[/math] The same method can be used to calculate one-sided lower and two sided bounds on reliability.