Weibull++ Standard Folio Data 3P-Weibull: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 5: Line 5:
|}
|}


{| align="center" class="FCK__ShowTableBorders" border="0" cellspacing="1" cellpadding="1"
{|  
|  valign="middle" |
=== The Three-Parameter Weibull Distribution ===
 
The three-parameter Weibull ''pdf'' is given by:
 
<math> f(t)={ \frac{\beta }{\eta }}\left( {\frac{t-\gamma }{\eta }}\right) ^{\beta -1}e^{-\left( {\frac{t-\gamma }{\eta }}\right) ^{\beta }} </math>
 
where,
 
<math> f(t)\geq 0,\text{ }t\geq 0\text{ or }\gamma, </math>
 
<math>\beta>0\ \,\!</math>,
 
<math> \eta > 0 \,\!</math>,
 
<math> -\infty < \gamma < +\infty \,\!</math>
 
and,
 
<math> \eta= \,\!</math> scale parameter, or characteristic life <math> \beta= \,\!</math> shape parameter (or slope),
 
<math> \gamma= \,\!</math> location parameter (or failure free life).
|-
|-
! scope="col" |  
|  valign="middle" |
{{Font|Reliability Web Notes|12|tahoma|bold|Blue}}
|-
|-
| align="center" valign="middle" |
| valign="middle" | [http://www.reliawiki.com/index.php/The_Weibull_Distribution The Weibull Distribution]
{{three-parameter weibull distribution}}
|-
| align="center" valign="middle" |
|-
| align="center" valign="middle" | [http://www.reliawiki.com/index.php/The_Weibull_Distribution The Weibull Distribution]


|}
|}

Revision as of 21:29, 7 February 2012

Webnotesbar.png

The Three-Parameter Weibull Distribution

The three-parameter Weibull pdf is given by:

[math]\displaystyle{ f(t)={ \frac{\beta }{\eta }}\left( {\frac{t-\gamma }{\eta }}\right) ^{\beta -1}e^{-\left( {\frac{t-\gamma }{\eta }}\right) ^{\beta }} }[/math]

where,

[math]\displaystyle{ f(t)\geq 0,\text{ }t\geq 0\text{ or }\gamma, }[/math]

[math]\displaystyle{ \beta\gt 0\ \,\! }[/math],

[math]\displaystyle{ \eta \gt 0 \,\! }[/math],

[math]\displaystyle{ -\infty \lt \gamma \lt +\infty \,\! }[/math]

and,

[math]\displaystyle{ \eta= \,\! }[/math] scale parameter, or characteristic life [math]\displaystyle{ \beta= \,\! }[/math] shape parameter (or slope),

[math]\displaystyle{ \gamma= \,\! }[/math] location parameter (or failure free life).

The Weibull Distribution


Docedit.png