Weibull++ Standard Folio Data 3P-Weibull: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 5: | Line 5: | ||
|} | |} | ||
{| | {| | ||
| valign="middle" | | |||
=== The Three-Parameter Weibull Distribution === | |||
The three-parameter Weibull ''pdf'' is given by: | |||
<math> f(t)={ \frac{\beta }{\eta }}\left( {\frac{t-\gamma }{\eta }}\right) ^{\beta -1}e^{-\left( {\frac{t-\gamma }{\eta }}\right) ^{\beta }} </math> | |||
where, | |||
<math> f(t)\geq 0,\text{ }t\geq 0\text{ or }\gamma, </math> | |||
<math>\beta>0\ \,\!</math>, | |||
<math> \eta > 0 \,\!</math>, | |||
<math> -\infty < \gamma < +\infty \,\!</math> | |||
and, | |||
<math> \eta= \,\!</math> scale parameter, or characteristic life <math> \beta= \,\!</math> shape parameter (or slope), | |||
<math> \gamma= \,\!</math> location parameter (or failure free life). | |||
|- | |- | ||
| valign="middle" | | |||
|- | |- | ||
| | | valign="middle" | [http://www.reliawiki.com/index.php/The_Weibull_Distribution The Weibull Distribution] | ||
|} | |} |
Revision as of 21:29, 7 February 2012
The Three-Parameter Weibull DistributionThe three-parameter Weibull pdf is given by: [math]\displaystyle{ f(t)={ \frac{\beta }{\eta }}\left( {\frac{t-\gamma }{\eta }}\right) ^{\beta -1}e^{-\left( {\frac{t-\gamma }{\eta }}\right) ^{\beta }} }[/math] where, [math]\displaystyle{ f(t)\geq 0,\text{ }t\geq 0\text{ or }\gamma, }[/math] [math]\displaystyle{ \beta\gt 0\ \,\! }[/math], [math]\displaystyle{ \eta \gt 0 \,\! }[/math], [math]\displaystyle{ -\infty \lt \gamma \lt +\infty \,\! }[/math] and, [math]\displaystyle{ \eta= \,\! }[/math] scale parameter, or characteristic life [math]\displaystyle{ \beta= \,\! }[/math] shape parameter (or slope), [math]\displaystyle{ \gamma= \,\! }[/math] location parameter (or failure free life). |
The Weibull Distribution |