Weibull++ Standard Folio Data 1P-Weibull: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 2: Line 2:
{| class="FCK__ShowTableBorders" border="0" cellspacing="0" cellpadding="0" align="center"; style="width:100%;"
{| class="FCK__ShowTableBorders" border="0" cellspacing="0" cellpadding="0" align="center"; style="width:100%;"
|-
|-
| valign="middle" align="left" bgcolor=DDDDDD|[[Image:Webnotesbar.png|center|250px]]
| valign="middle" align="left" bgcolor=EEEEEE|[[Image:Webnotesbar.png|center|250px]]
|}
|}



Revision as of 22:41, 7 February 2012

 

Webnotesbar.png


The One-Parameter Weibull Distribution

The one-parameter Weibull reliability function is obtained by again setting [math]\displaystyle{ \gamma=0 \,\! }[/math] and assuming [math]\displaystyle{ \beta=C=Constant \,\! }[/math] assumed value or:

Weibullreliabilityfunction.gif

where the only unknown parameter is the scale parameter, [math]\displaystyle{ \eta\,\! }[/math].

Note that in the formulation of the one-parameter Weibull, we assume that the shape parameter [math]\displaystyle{ \beta \,\! }[/math] is known a priori from past experience on identical or similar products. The advantage of doing this is that data sets with few or no failures can be analyzed.


The Weibull Distribution


Docedit.png