Weibull++ Standard Folio Data 1P-Weibull: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 9: Line 9:
|-
|-
| valign="middle" align="left" |  
| valign="middle" align="left" |  
{{one-parameter weibull distribution}} 
==== The One-Parameter Weibull Distribution ====
 
The one-parameter Weibull ''pdf'' is obtained by again setting
<math>\gamma=0 \,\!</math> and assuming <math>\beta=C=Constant \,\!</math> assumed value or:
 
::<math> f(T)={ \frac{C}{\eta }}\left( {\frac{T}{\eta }}\right) ^{C-1}e^{-\left( {\frac{T}{ \eta }}\right) ^{C}} \,\!</math>
 
where the only unknown parameter is the scale parameter, <math>\eta\,\!</math>.
 
Note that in the formulation of the one-parameter Weibull, we assume that the shape parameter <math>\beta \,\!</math> is known ''a priori'' from past experience on identical or similar products. The advantage of doing this is that data sets with few or no failures can be analyzed.
 


|-
|-

Revision as of 21:14, 7 February 2012

 

Webnotesbar.png


The One-Parameter Weibull Distribution

The one-parameter Weibull pdf is obtained by again setting [math]\displaystyle{ \gamma=0 \,\! }[/math] and assuming [math]\displaystyle{ \beta=C=Constant \,\! }[/math] assumed value or:

[math]\displaystyle{ f(T)={ \frac{C}{\eta }}\left( {\frac{T}{\eta }}\right) ^{C-1}e^{-\left( {\frac{T}{ \eta }}\right) ^{C}} \,\! }[/math]

where the only unknown parameter is the scale parameter, [math]\displaystyle{ \eta\,\! }[/math].

Note that in the formulation of the one-parameter Weibull, we assume that the shape parameter [math]\displaystyle{ \beta \,\! }[/math] is known a priori from past experience on identical or similar products. The advantage of doing this is that data sets with few or no failures can be analyzed.


The Weibull Distribution


Docedit.png