Template:2 parameter exponential distribution RRY example: Difference between revisions
Line 49: | Line 49: | ||
<center><math>\begin{matrix} | <center><math>\begin{matrix} | ||
N & T_{i} & F( | N & T_{i} & F(t_{i}) & y_{i} & T_{i}^{2} & y_{i}^{2} & T_{i} y_{i} \\ | ||
\text{1} & \text{5} & \text{0}\text{.0483} & \text{-0}\text{.0495} & \text{25} & \text{0}\text{.0025} & \text{-0}\text{.2475} \\ | \text{1} & \text{5} & \text{0}\text{.0483} & \text{-0}\text{.0495} & \text{25} & \text{0}\text{.0025} & \text{-0}\text{.2475} \\ | ||
\text{2} & \text{10} & \text{0}\text{.1170} & \text{-0}\text{.1244} & \text{100} & \text{0}\text{.0155} & \text{-1}\text{.2443} \\ | \text{2} & \text{10} & \text{0}\text{.1170} & \text{-0}\text{.1244} & \text{100} & \text{0}\text{.0155} & \text{-1}\text{.2443} \\ | ||
Line 69: | Line 69: | ||
The median rank values ( <math>F({{T}_{i}})</math> ) can be found in rank tables or they can be estimated using the Quick Statistical Reference in Weibull++. | The median rank values ( <math>F({{T}_{i}})</math> ) can be found in rank tables or they can be estimated using the Quick Statistical Reference in Weibull++. | ||
Given the values in the table above, calculate <math>\hat{a}</math> and <math>\hat{b}</math> | Given the values in the table above, calculate <math>\hat{a}</math> and <math>\hat{b}</math>: | ||
Line 78: | Line 78: | ||
\end{align}</math> | \end{align}</math> | ||
or: | |||
::<math>\hat{b}=-0.02711</math> | ::<math>\hat{b}=-0.02711</math> | ||
and: | |||
::<math>\hat{a}=\overline{y}-\hat{b}\overline{T}=\frac{\underset{i=1}{\overset{N}{\mathop{\sum }}}\,{{y}_{i}}}{N}-\hat{b}\frac{\underset{i=1}{\overset{N}{\mathop{\sum }}}\,{{T}_{i}}}{N}</math> | ::<math>\hat{a}=\overline{y}-\hat{b}\overline{T}=\frac{\underset{i=1}{\overset{N}{\mathop{\sum }}}\,{{y}_{i}}}{N}-\hat{b}\frac{\underset{i=1}{\overset{N}{\mathop{\sum }}}\,{{T}_{i}}}{N}</math> | ||
or: | |||
::<math>\hat{a}=\frac{-13.2315}{14}-(-0.02711)\frac{630}{14}=0.2748</math> | ::<math>\hat{a}=\frac{-13.2315}{14}-(-0.02711)\frac{630}{14}=0.2748</math> | ||
Therefore | Therefore: | ||
::<math>\hat{\lambda }=-\hat{b}=-(-0.02711)=0.02711\text{ failures/hour}</math> | ::<math>\hat{\lambda }=-\hat{b}=-(-0.02711)=0.02711\text{ failures/hour}</math> | ||
and: | |||
::<math>\hat{\gamma }=\frac{\hat{a}}{\hat{\lambda }}=\frac{0.2748}{0.02711}</math> | ::<math>\hat{\gamma }=\frac{\hat{a}}{\hat{\lambda }}=\frac{0.2748}{0.02711}</math> | ||
or: | |||
::<math>\hat{\gamma }=10.1365\text{ hours}</math> | ::<math>\hat{\gamma }=10.1365\text{ hours}</math> | ||
Then: | |||
::<math>f(T)=(0.02711)\cdot {{e}^{-0.02711(T-10.136)}}</math> | ::<math>f(T)=(0.02711)\cdot {{e}^{-0.02711(T-10.136)}}</math> | ||
The correlation coefficient can be estimated using | The correlation coefficient can be estimated using equation for calculating the correlation coefficient: | ||
::<math>\hat{\rho }=-0.9679</math> | ::<math>\hat{\rho }=-0.9679</math> |
Revision as of 23:25, 7 February 2012
Example 2: 2 Parameter Exponential Distribution RRY
Fourteen units were being reliability tested and the following life test data were obtained (Table 7.1):
Table 7.1 - Life Test Data | |
Data point index | Time-to-failure |
---|---|
1 | 5 |
2 | 10 |
3 | 15 |
4 | 20 |
5 | 25 |
6 | 30 |
7 | 35 |
8 | 40 |
9 | 50 |
10 | 60 |
11 | 70 |
12 | 80 |
13 | 90 |
14 | 100 |
Assuming that the data follow a two-parameter exponential distribution, estimate the parameters and determine the correlation coefficient, [math]\displaystyle{ \rho }[/math], using rank regression on Y.
Solution to Example 2
Construct Table 7.2, as shown next.
The median rank values ( [math]\displaystyle{ F({{T}_{i}}) }[/math] ) can be found in rank tables or they can be estimated using the Quick Statistical Reference in Weibull++.
Given the values in the table above, calculate [math]\displaystyle{ \hat{a} }[/math] and [math]\displaystyle{ \hat{b} }[/math]:
- [math]\displaystyle{ \begin{align} \hat{b}= & \frac{\underset{i=1}{\overset{14}{\mathop{\sum }}}\,{{T}_{i}}{{y}_{i}}-(\underset{i=1}{\overset{14}{\mathop{\sum }}}\,{{T}_{i}})(\underset{i=1}{\overset{14}{\mathop{\sum }}}\,{{y}_{i}})/14}{\underset{i=1}{\overset{14}{\mathop{\sum }}}\,T_{i}^{2}-{{(\underset{i=1}{\overset{14}{\mathop{\sum }}}\,{{T}_{i}})}^{2}}/14} \\ \\ \hat{b}= & \frac{-927.4899-(630)(-13.2315)/14}{40,600-{{(630)}^{2}}/14} \end{align} }[/math]
or:
- [math]\displaystyle{ \hat{b}=-0.02711 }[/math]
and:
- [math]\displaystyle{ \hat{a}=\overline{y}-\hat{b}\overline{T}=\frac{\underset{i=1}{\overset{N}{\mathop{\sum }}}\,{{y}_{i}}}{N}-\hat{b}\frac{\underset{i=1}{\overset{N}{\mathop{\sum }}}\,{{T}_{i}}}{N} }[/math]
or:
- [math]\displaystyle{ \hat{a}=\frac{-13.2315}{14}-(-0.02711)\frac{630}{14}=0.2748 }[/math]
Therefore:
- [math]\displaystyle{ \hat{\lambda }=-\hat{b}=-(-0.02711)=0.02711\text{ failures/hour} }[/math]
and:
- [math]\displaystyle{ \hat{\gamma }=\frac{\hat{a}}{\hat{\lambda }}=\frac{0.2748}{0.02711} }[/math]
or:
- [math]\displaystyle{ \hat{\gamma }=10.1365\text{ hours} }[/math]
Then:
- [math]\displaystyle{ f(T)=(0.02711)\cdot {{e}^{-0.02711(T-10.136)}} }[/math]
The correlation coefficient can be estimated using equation for calculating the correlation coefficient:
- [math]\displaystyle{ \hat{\rho }=-0.9679 }[/math]
This example can be repeated using Weibull++, choosing two-parameter exponential and rank regression on Y (RRY), as shown in the figure on the following page.
The estimated parameters and the correlation coefficient using Weibull++ were found to be:
- [math]\displaystyle{ \hat{\lambda }=0.0271\text{ fr/hr },\hat{\gamma }=10.1348\text{ hr },\hat{\rho }=-0.9679 }[/math]
The probability plot can be obtained simply by clicking the Plot icon.