Template:Alta exponential reliability function: Difference between revisions
Jump to navigation
Jump to search
Line 1: | Line 1: | ||
====The Reliability Function==== | ====The Reliability Function==== | ||
The 1-parameter exponential reliability function is given by: | The 1-parameter exponential reliability function is given by: | ||
<br> | <br> | ||
::<math>R(T)={{e}^{-\lambda T}}={{e}^{-\tfrac{T}{m}}}</math> | ::<math>R(T)={{e}^{-\lambda T}}={{e}^{-\tfrac{T}{m}}}</math> | ||
<br> | <br> | ||
This function is the complement of the exponential cumulative distribution function or: | This function is the complement of the exponential cumulative distribution function or: | ||
<br> | <br> | ||
::<math>R(T)=1-Q(T)=1-\int_{0}^{T}f(T)dT</math> | ::<math>R(T)=1-Q(T)=1-\int_{0}^{T}f(T)dT</math> | ||
<br> | <br> | ||
and: | |||
<br> | <br> | ||
::<math>R(T)=1-\int_{0}^{T}\lambda {{e}^{-\lambda T}}dT={{e}^{-\lambda T}}</math> | ::<math>R(T)=1-\int_{0}^{T}\lambda {{e}^{-\lambda T}}dT={{e}^{-\lambda T}}</math> | ||
<br> | <br> |
Revision as of 23:22, 27 February 2012
The Reliability Function
The 1-parameter exponential reliability function is given by:
- [math]\displaystyle{ R(T)={{e}^{-\lambda T}}={{e}^{-\tfrac{T}{m}}} }[/math]
This function is the complement of the exponential cumulative distribution function or:
- [math]\displaystyle{ R(T)=1-Q(T)=1-\int_{0}^{T}f(T)dT }[/math]
and:
- [math]\displaystyle{ R(T)=1-\int_{0}^{T}\lambda {{e}^{-\lambda T}}dT={{e}^{-\lambda T}} }[/math]