ALTA ALTA Standard Folio Data PPH-Weibull: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
{{Template:NoSkin}}
{{Template:NoSkin}}
{| align="center" class="FCK__ShowTableBorders" border="0" cellspacing="1" cellpadding="1"
{| class="FCK__ShowTableBorders" border="0" cellspacing="0" cellpadding="0" align="center"; style="width:100%;"
|-
|-
! scope="col" |  
| valign="middle" align="left" bgcolor=EEEEEE|[[Image: Webnotes-alta.png |center|195px]]
{{Font|Reliability Web Notes|12|tahoma|bold|Blue}}
|}
{| class="FCK__ShowTableBorders" border="0" cellspacing="1" cellpadding="1"
|-
|-
| align="center" valign="middle" |{{Font|Standard Folio Data PPH-Weibull|11|tahoma|bold|gray}}
| valign="middle" |{{Font|Standard Folio Data PPH-Weibull|11|tahoma|bold|gray}}
|-
|-
| align="center" valign="middle" | {{Font|ALTA|10|tahoma|bold|gray}}
| valign="middle" | {{Font|ALTA|10|tahoma|bold|gray}}
|-
|-
| align="center" valign="middle" |
| valign="middle" |
Solving for the parameters that maximize Eqn. (PH LKV) will yield the parameters for the PH-Weibull model. Note that for  <math>\beta </math>  = 1, Eqn. (PH LKV) becomes the likelihood function for the PH-exponential model, which is similar to the original form of the proportional hazards model proposed by Cox [28].
Solving for the parameters that maximize Eqn. (PH LKV) will yield the parameters for the PH-Weibull model. Note that for  <math>\beta </math>  = 1, Eqn. (PH LKV) becomes the likelihood function for the PH-exponential model, which is similar to the original form of the proportional hazards model proposed by Cox [28].
<br>
<br>
Note that the likelihood function given by Eqn. (GLL-LK) is very similar to the likelihood function for the proportional hazards-Weibull model given by Eqn. (PH LKV). In particular, the shape parameter of the Weibull distribution can be included in the regression coefficients of Eqn. (13) as follows:  
Note that the likelihood function given by Eqn. (GLL-LK) is very similar to the likelihood function for the proportional hazards-Weibull model given by Eqn. (PH LKV). In particular, the shape parameter of the Weibull distribution can be included in the regression coefficients of Eqn. (13) as follows:  
<br>
<br>
::<math>{{a}_{i,PH}}=-\beta \cdot {{a}_{i,GLL}}</math>
::<math>{{a}_{i,PH}}=-\beta \cdot {{a}_{i,GLL}}</math>
<br>
<br>
:where:
:where:
Line 26: Line 25:
In this case, the likelihood functions given by Eqns. (PH LKV) and (GLL-LK) are identical. Therefore, if no transformation on the covariates is performed, the parameter values that maximize Eqn. (GLL-LK) also maximize the likelihood function for the proportional hazards-Weibull (PHW) model with parameters given by Eqn. (GLL Parameters). Note that for  <math>\beta </math>  = 1 (exponential life distribution), Eqns. (PH LKV) and (GLL-LK) are identical, and  <math>{{a}_{i,PH}}=-{{a}_{i,GLL}}.</math>  
In this case, the likelihood functions given by Eqns. (PH LKV) and (GLL-LK) are identical. Therefore, if no transformation on the covariates is performed, the parameter values that maximize Eqn. (GLL-LK) also maximize the likelihood function for the proportional hazards-Weibull (PHW) model with parameters given by Eqn. (GLL Parameters). Note that for  <math>\beta </math>  = 1 (exponential life distribution), Eqns. (PH LKV) and (GLL-LK) are identical, and  <math>{{a}_{i,PH}}=-{{a}_{i,GLL}}.</math>  
<br>
<br>
|-
|-
| align="center" valign="middle" | [http://reliawiki.com/index.php/Template:PH_Model PH Model]
| valign="middle" | [http://reliawiki.com/index.php/Template:PH_Model PH Model]
 
|}
|}
<br>  
<br>  


[[File:docedit.png|20px|right|link=http://www.reliawiki.com/index.php?title=ALTA_ALTA_Standard_Folio_Data_PPH-Weibull&action=edit]]
[[File:docedit.png|20px|right|link=http://www.reliawiki.com/index.php?title=ALTA_ALTA_Standard_Folio_Data_PPH-Weibull&action=edit]]

Revision as of 22:10, 10 February 2012

Webnotes-alta.png
Standard Folio Data PPH-Weibull
ALTA

Solving for the parameters that maximize Eqn. (PH LKV) will yield the parameters for the PH-Weibull model. Note that for [math]\displaystyle{ \beta }[/math] = 1, Eqn. (PH LKV) becomes the likelihood function for the PH-exponential model, which is similar to the original form of the proportional hazards model proposed by Cox [28].
Note that the likelihood function given by Eqn. (GLL-LK) is very similar to the likelihood function for the proportional hazards-Weibull model given by Eqn. (PH LKV). In particular, the shape parameter of the Weibull distribution can be included in the regression coefficients of Eqn. (13) as follows:

[math]\displaystyle{ {{a}_{i,PH}}=-\beta \cdot {{a}_{i,GLL}} }[/math]


where:


[math]\displaystyle{ {{a}_{i,PH}} }[/math] are the parameters of the PH model.

[math]\displaystyle{ {{a}_{i,GLL}} }[/math] are the parameters of the general log-linear model.

In this case, the likelihood functions given by Eqns. (PH LKV) and (GLL-LK) are identical. Therefore, if no transformation on the covariates is performed, the parameter values that maximize Eqn. (GLL-LK) also maximize the likelihood function for the proportional hazards-Weibull (PHW) model with parameters given by Eqn. (GLL Parameters). Note that for [math]\displaystyle{ \beta }[/math] = 1 (exponential life distribution), Eqns. (PH LKV) and (GLL-LK) are identical, and [math]\displaystyle{ {{a}_{i,PH}}=-{{a}_{i,GLL}}. }[/math]

PH Model


Docedit.png