ALTA ALTA Standard Folio Data Eyring-Weibull: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Template:NoSkin}} | {{Template:NoSkin}} | ||
{| align="center" class="FCK__ShowTableBorders" border="0" cellspacing="1" cellpadding="1" | {| class="FCK__ShowTableBorders" border="0" cellspacing="0" cellpadding="0" align="center"; style="width:100%;" | ||
|- | |||
| valign="middle" align="left" bgcolor=EEEEEE|[[Image: Webnotes-alta.png |center|195px]] | |||
|} | |||
{| class="FCK__ShowTableBorders" border="0" cellspacing="1" cellpadding="1" | |||
|- | |- | ||
! scope="col" | | ! scope="col" | | ||
{{Font|Reliability Web Notes|12|tahoma|bold|Blue}} | {{Font|Reliability Web Notes|12|tahoma|bold|Blue}} | ||
|- | |- | ||
| | | valign="middle" |{{Font|Standard Folio Data Eyring-Weibull|11|tahoma|bold|gray}} | ||
|- | |- | ||
| | | valign="middle" | {{Font|ALTA|10|tahoma|bold|gray}} | ||
|- | |- | ||
| | | valign="middle" | | ||
The <math>pdf</math> for 2-parameter Weibull distribution is given by: | The <math>pdf</math> for 2-parameter Weibull distribution is given by: | ||
<br> | <br> | ||
<math>f(t)=\frac{\beta }{\eta }{{\left( \frac{t}{\eta } \right)}^{\beta -1}}{{e}^{-{{\left( \tfrac{t}{\eta } \right)}^{\beta }}}}</math> | |||
<br> | <br> | ||
The scale parameter (or characteristic life) of the Weibull distribution is <math>\eta </math> . The Eyring-Weibull model <math>pdf</math> can then be obtained by setting <math>\eta =L(V)</math> in Eqn. (eyring): | The scale parameter (or characteristic life) of the Weibull distribution is <math>\eta </math> . The Eyring-Weibull model <math>pdf</math> can then be obtained by setting <math>\eta =L(V)</math> in Eqn. (eyring): | ||
<br> | <br> | ||
<math>\eta =L(V)=\frac{1}{V}{{e}^{-\left( A-\tfrac{B}{V} \right)}}</math> | |||
<br> | <br> | ||
or: | |||
<br> | <br> | ||
<math>\frac{1}{\eta }=V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}}</math> | |||
<br> | <br> | ||
Substituting for <math>\eta </math> into Eqn. (Eyrpdf): | Substituting for <math>\eta </math> into Eqn. (Eyrpdf): | ||
<br> | <br> | ||
<math>f(t,V)=\beta \cdot V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}}{{\left( t\cdot V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}} \right)}^{\beta -1}}{{e}^{-{{\left( t\cdot V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}} \right)}^{\beta }}}}</math> | |||
|- | |- | ||
| | | valign="middle" | [http://reliawiki.com/index.php/Template:Alta_eyring-weibull#Eyring-Weibull Get More Details...] | ||
|} | |} | ||
<br> | <br> | ||
[[File:docedit.png|20px|right|link=http://www.reliawiki.com/index.php?title=ALTA_ALTA_Standard_Folio_Data_Eyring-Weibull&action=edit]] | [[File:docedit.png|20px|right|link=http://www.reliawiki.com/index.php?title=ALTA_ALTA_Standard_Folio_Data_Eyring-Weibull&action=edit]] |
Revision as of 21:49, 10 February 2012
Reliability Web Notes |
---|
Standard Folio Data Eyring-Weibull |
ALTA |
The [math]\displaystyle{ pdf }[/math] for 2-parameter Weibull distribution is given by:
|
Get More Details... |