ALTA ALTA Standard Folio Data Eyring-Exponential: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 41: Line 41:
|-
|-
| align="center" valign="middle" | [http://reliawiki.com/index.php/Template:Alta_a-e.e-e#Eyring-Exponential Get More Details...]
| align="center" valign="middle" | [http://reliawiki.com/index.php/Template:Alta_a-e.e-e#Eyring-Exponential Get More Details...]
|-
 
| align="center" valign="middle" | [Link2 See Examples...]
|}
|}



Revision as of 16:53, 24 January 2012

Reliability Web Notes

Standard Folio Data Eyring-Exponential
ALTA

The [math]\displaystyle{ pdf }[/math] of the 1-parameter exponential distribution is given by:


[math]\displaystyle{ f(t)=\lambda \cdot {{e}^{-\lambda \cdot t}} }[/math]


It can be easily shown that the mean life for the 1-parameter exponential distribution (presented in detail in Chapter 5) is given by:


[math]\displaystyle{ \lambda =\frac{1}{m} }[/math]


thus:


[math]\displaystyle{ f(t)=\frac{1}{m}\cdot {{e}^{-\tfrac{t}{m}}} }[/math]


The Eyring-exponential model [math]\displaystyle{ pdf }[/math] can then be obtained by setting [math]\displaystyle{ m=L(V) }[/math] in Eqn. (eyring):


[math]\displaystyle{ m=L(V)=\frac{1}{V}{{e}^{-\left( A-\tfrac{B}{V} \right)}} }[/math]


and substituting for [math]\displaystyle{ m }[/math] in Eqn. (pdfexpm2):


[math]\displaystyle{ f(t,V)=V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}}{{e}^{-V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}}\cdot t}} }[/math]

Get More Details...



Docedit.png