ALTA ALTA Standard Folio Data Eyring-Weibull: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 10: | Line 10: | ||
|- | |- | ||
| align="center" valign="middle" | | | align="center" valign="middle" | | ||
The <math>pdf</math> | The <math>pdf</math> for 2-parameter Weibull distribution is given by: | ||
<br> | <br> | ||
::<math>f(t)=\ | ::<math>f(t)=\frac{\beta }{\eta }{{\left( \frac{t}{\eta } \right)}^{\beta -1}}{{e}^{-{{\left( \tfrac{t}{\eta } \right)}^{\beta }}}}</math> | ||
<br> | <br> | ||
The scale parameter (or characteristic life) of the Weibull distribution is <math>\eta </math> . The Eyring-Weibull model <math>pdf</math> can then be obtained by setting <math>\eta =L(V)</math> in Eqn. (eyring): | |||
<br> | <br> | ||
::<math>\ | ::<math>\eta =L(V)=\frac{1}{V}{{e}^{-\left( A-\tfrac{B}{V} \right)}}</math> | ||
<br> | <br> | ||
: | :or: | ||
<br> | <br> | ||
::<math> | ::<math>\frac{1}{\eta }=V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}}</math> | ||
<br> | <br> | ||
Substituting for <math>\eta </math> into Eqn. (Eyrpdf): | |||
<br> | <br> | ||
::<math> | ::<math>f(t,V)=\beta \cdot V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}}{{\left( t\cdot V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}} \right)}^{\beta -1}}{{e}^{-{{\left( t\cdot V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}} \right)}^{\beta }}}}</math> | ||
|- | |- | ||
| align="center" valign="middle" | [http://reliawiki.com/index.php/Template: | | align="center" valign="middle" | [http://reliawiki.com/index.php/Template:Alta_eyring-weibull#Eyring-Weibull Get More Details...] | ||
|- | |- | ||
| align="center" valign="middle" | [Link2 See Examples...] | | align="center" valign="middle" | [Link2 See Examples...] |
Revision as of 22:17, 16 January 2012
Reliability Web Notes |
---|
Standard Folio Data Eyring-Weibull |
ALTA |
The [math]\displaystyle{ pdf }[/math] for 2-parameter Weibull distribution is given by:
|
Get More Details... |
[Link2 See Examples...] |