ALTA ALTA Standard Folio Data Arrhenius-Exponential: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 48: Line 48:
|-
|-
| align="center" valign="middle" | [http://reliawiki.com/index.php/Template:Aae#Arrhenius-Exponential Get More Details...]
| align="center" valign="middle" | [http://reliawiki.com/index.php/Template:Aae#Arrhenius-Exponential Get More Details...]
|-
 
| align="center" valign="middle" | [Link2 See Examples...]
|}
|}



Revision as of 16:51, 24 January 2012

Reliability Web Notes

Standard Folio Data Arrhenius-Exponential
ALTA

The [math]\displaystyle{ pdf }[/math] of the 1-parameter exponential distribution is given by:


[math]\displaystyle{ f(t)=\lambda {{e}^{-\lambda t}} }[/math]


It can be easily shown that the mean life for the 1-parameter exponential distribution (presented in detail in Chapter 5) is given by:



[math]\displaystyle{ \lambda =\frac{1}{m} }[/math]


thus:



[math]\displaystyle{ f(t)=\frac{1}{m}{{e}^{-\tfrac{t}{m}}} }[/math]



The Arrhenius-exponential model [math]\displaystyle{ pdf }[/math] can then be obtained by setting [math]\displaystyle{ m=L(V) }[/math] in Eqn. (arrhenius).
Therefore:


[math]\displaystyle{ m=L(V)=C{{e}^{\tfrac{B}{V}}} }[/math]


Substituting for [math]\displaystyle{ m }[/math] in Eqn. (pdfexpm) yields a [math]\displaystyle{ pdf }[/math] that is both a function of time and stress or:



[math]\displaystyle{ f(t,V)=\frac{1}{C{{e}^{\tfrac{B}{V}}}}\cdot {{e}^{-\tfrac{1}{C{{e}^{\tfrac{B}{V}}}}\cdot t}} }[/math]


Get More Details...



Docedit.png