ALTA ALTA Standard Folio Data TH-Lognormal: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 13: | Line 13: | ||
<br> | <br> | ||
<math>f(T)=\frac{1}{T\text{ }{{\sigma }_{{{T}'}}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{{T}'-\overline{{{T}'}}}{{{\sigma }_{{{T}'}}}} \right)}^{2}}}}</math> | |||
<br> | <br> | ||
Line 19: | Line 19: | ||
<br> | <br> | ||
<math>{T}'=\ln (T)</math> | |||
<br> | <br> | ||
<math>T=\text{times-to-failure}</math> | |||
<br> | <br> | ||
Line 28: | Line 28: | ||
<br> | <br> | ||
• <math>\overline{{{T}'}}=</math> mean of the natural logarithms of the times-to-failure. | • <math>\overline{{{T}'}}=</math> mean of the natural logarithms of the times-to-failure. | ||
• <math>{{\sigma }_{{{T}'}}}=</math> standard deviation of the natural logarithms of the times-to-failure. | • <math>{{\sigma }_{{{T}'}}}=</math> standard deviation of the natural logarithms of the times-to-failure. | ||
|- | |- |
Revision as of 18:16, 16 January 2012
Reliability Web Notes |
---|
Standard Folio Data TH-Lognormal |
ALTA |
The [math]\displaystyle{ pdf }[/math] of the lognormal distribution is given by:
[math]\displaystyle{ f(T)=\frac{1}{T\text{ }{{\sigma }_{{{T}'}}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{{T}'-\overline{{{T}'}}}{{{\sigma }_{{{T}'}}}} \right)}^{2}}}} }[/math]
• [math]\displaystyle{ {{\sigma }_{{{T}'}}}= }[/math] standard deviation of the natural logarithms of the times-to-failure. |
Get More Details... |
[Link2 See Examples...] |