ALTA ALTA Standard Folio Data IPL-Lognormal: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 12: Line 12:
The IPL-lognormal model pdf can be obtained first by setting  = L(V) in Eqn. ( 30). Therefore:
The IPL-lognormal model pdf can be obtained first by setting  = L(V) in Eqn. ( 30). Therefore:


 
<math> \breve{T}=L(V)=\frac{1}{K*V^n}</math>
::<math> \breve{T}=L(V)=\frac{1}{K*V^n}</math>




or:
or:


::<math>e^{\overline{T'}}=\frac{1}{K*V^n}</math>
<math>e^{\overline{T'}}=\frac{1}{K*V^n}</math>


Thus:
Thus:


::<math>\overline{T}'=-ln(K)-n ln(V) </math>(8)
<math>\overline{T}'=-ln(K)-n ln(V) </math>(8)


|-
|-

Revision as of 18:05, 16 January 2012

Reliability Web Notes

Standard Folio Data IPL-Lognormal
ALTA

The IPL-lognormal model pdf can be obtained first by setting = L(V) in Eqn. ( 30). Therefore:

[math]\displaystyle{ \breve{T}=L(V)=\frac{1}{K*V^n} }[/math]


or:

[math]\displaystyle{ e^{\overline{T'}}=\frac{1}{K*V^n} }[/math]

Thus:

[math]\displaystyle{ \overline{T}'=-ln(K)-n ln(V) }[/math](8)

Get More Details...
[Link2 See Examples...]



Docedit.png