ALTA ALTA Standard Folio Data IPL-Lognormal: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 12: | Line 12: | ||
The IPL-lognormal model pdf can be obtained first by setting = L(V) in Eqn. ( 30). Therefore: | The IPL-lognormal model pdf can be obtained first by setting = L(V) in Eqn. ( 30). Therefore: | ||
<math> \breve{T}=L(V)=\frac{1}{K*V^n}</math> | |||
or: | or: | ||
<math>e^{\overline{T'}}=\frac{1}{K*V^n}</math> | |||
Thus: | Thus: | ||
<math>\overline{T}'=-ln(K)-n ln(V) </math>(8) | |||
|- | |- |
Revision as of 18:05, 16 January 2012
Reliability Web Notes |
---|
Standard Folio Data IPL-Lognormal |
ALTA |
The IPL-lognormal model pdf can be obtained first by setting = L(V) in Eqn. ( 30). Therefore: [math]\displaystyle{ \breve{T}=L(V)=\frac{1}{K*V^n} }[/math]
[math]\displaystyle{ e^{\overline{T'}}=\frac{1}{K*V^n} }[/math] Thus: [math]\displaystyle{ \overline{T}'=-ln(K)-n ln(V) }[/math](8) |
Get More Details... |
[Link2 See Examples...] |