ALTA ALTA Standard Folio Data Eyring-Lognormal: Difference between revisions
(Created page with '{{Template:NoSkin}} {| align="center" class="FCK__ShowTableBorders" border="0" cellspacing="1" cellpadding="1" |- ! scope="col" | {{Font|Reliability Web Notes|12|tahoma|bold|Blu…') |
No edit summary |
||
Line 10: | Line 10: | ||
|- | |- | ||
| align="center" valign="middle" | | | align="center" valign="middle" | | ||
The <math>pdf</math> of the lognormal distribution is given by: | |||
<br> | |||
<math>f(T)=\frac{1}{T\text{ }{{\sigma }_{{{T}'}}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{{T}'-\overline{{{T}'}}}{{{\sigma }_{{{T}'}}}} \right)}^{2}}}}</math> | |||
<br> | |||
where: | |||
<br> | |||
<math>{T}'=\ln (T)</math> | |||
<br> | |||
<math>T=\text{times-to-failure}</math> | |||
<br> | |||
:and: | |||
<br> | |||
• <math>\overline{{{T}'}}=</math> mean of the natural logarithms of the times-to-failure. | |||
• <math>{{\sigma }_{{{T}'}}}=</math> standard deviation of the natural logarithms of the times-to-failure. | |||
<br> | |||
The Eyring-lognormal model can be obtained first by setting <math>\breve{T}=L(V)</math> in Eqn. (eyring). Therefore: | |||
<br> | |||
<math>\breve{T}=L(V)=\frac{1}{V}{{e}^{-(A-\tfrac{B}{V})}}</math> | |||
<br> | |||
or: | |||
<br> | |||
<br> | |||
<math>{{e}^{{{\overline{T}}^{\prime }}}}=\frac{1}{V}{{e}^{-(A-\tfrac{B}{V})}}</math> | |||
<br> | |||
Thus: | |||
<br> | |||
<br> | |||
<math>{{\overline{T}}^{\prime }}=-\ln (V)-A+\frac{B}{V}</math> | |||
<br> | |||
Substituting Eqn. (eyr-logn-mean) into Eqn. (Eyr-logn-pdf) yields the Eyring-lognormal model <math>pdf</math> | |||
or: | |||
<math>f(T,V)=\frac{1}{T\text{ }{{\sigma }_{{{T}'}}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{{T}'+\ln (V)+A-\tfrac{B}{V}}{{{\sigma }_{{{T}'}}}} \right)}^{2}}}}</math> | |||
|- | |- | ||
| align="center" valign="middle" | | | align="center" valign="middle" | [http://reliawiki.com/index.php/Template:Erying-log#Eyring-Lognormal Get More Details...] | ||
|- | |- | ||
| align="center" valign="middle" | [Link2 See Examples...] | | align="center" valign="middle" | [Link2 See Examples...] |
Revision as of 22:20, 16 January 2012
Reliability Web Notes |
---|
Standard Folio Data Eyring-Lognormal |
ALTA |
The [math]\displaystyle{ pdf }[/math] of the lognormal distribution is given by:
• [math]\displaystyle{ {{\sigma }_{{{T}'}}}= }[/math] standard deviation of the natural logarithms of the times-to-failure.
[math]\displaystyle{ f(T,V)=\frac{1}{T\text{ }{{\sigma }_{{{T}'}}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{{T}'+\ln (V)+A-\tfrac{B}{V}}{{{\sigma }_{{{T}'}}}} \right)}^{2}}}} }[/math] |
Get More Details... |
[Link2 See Examples...] |