ALTA ALTA Standard Folio Data Arrhenius-Exponential: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
(Created page with '{{Template:NoSkin}} {| align="center" class="FCK__ShowTableBorders" border="0" cellspacing="1" cellpadding="1" |- ! scope="col" | {{Font|Reliability Web Notes|12|tahoma|bold|Blu…')
 
No edit summary
Line 10: Line 10:
|-
|-
| align="center" valign="middle" |
| align="center" valign="middle" |
Content 1
The  <math>pdf</math>  of the 1-parameter exponential distribution is given by:
 
<br>
<math>f(t)=\lambda {{e}^{-\lambda t}}</math>
 
<br>
It can be easily shown that the mean life for the 1-parameter exponential distribution (presented in detail in Chapter 5) is given by:
 
 
<br>
<math>\lambda =\frac{1}{m}</math>
 
<br>
thus:
 
 
<br>
<math>f(t)=\frac{1}{m}{{e}^{-\tfrac{t}{m}}}</math>
 
<br>
The Arrhenius-exponential model  <math>pdf</math>  can then be obtained by setting  <math>m=L(V)</math>  in Eqn. (arrhenius).
<br>
Therefore:
 
<br>
<math>m=L(V)=C{{e}^{\tfrac{B}{V}}}</math>
 
<br>
Substituting for  <math>m</math>  in Eqn. (pdfexpm) yields a  <math>pdf</math>  that is both a function of time and stress or:
 
 
<br>
<math>f(t,V)=\frac{1}{C{{e}^{\tfrac{B}{V}}}}\cdot {{e}^{-\tfrac{1}{C{{e}^{\tfrac{B}{V}}}}\cdot t}}</math>
 
 
|-
|-
| align="center" valign="middle" |
| align="center" valign="middle" | [http://reliawiki.com/index.php/Template:Aae#Arrhenius-Exponential Get More Details...]
Content 2
|-
| align="center" valign="middle" | [Link1 Get More Details...]
|-
|-
| align="center" valign="middle" | [Link2 See Examples...]
| align="center" valign="middle" | [Link2 See Examples...]

Revision as of 21:46, 16 January 2012

Reliability Web Notes

Standard Folio Data Arrhenius-Exponential
ALTA

The [math]\displaystyle{ pdf }[/math] of the 1-parameter exponential distribution is given by:


[math]\displaystyle{ f(t)=\lambda {{e}^{-\lambda t}} }[/math]


It can be easily shown that the mean life for the 1-parameter exponential distribution (presented in detail in Chapter 5) is given by:



[math]\displaystyle{ \lambda =\frac{1}{m} }[/math]


thus:



[math]\displaystyle{ f(t)=\frac{1}{m}{{e}^{-\tfrac{t}{m}}} }[/math]



The Arrhenius-exponential model [math]\displaystyle{ pdf }[/math] can then be obtained by setting [math]\displaystyle{ m=L(V) }[/math] in Eqn. (arrhenius).
Therefore:


[math]\displaystyle{ m=L(V)=C{{e}^{\tfrac{B}{V}}} }[/math]


Substituting for [math]\displaystyle{ m }[/math] in Eqn. (pdfexpm) yields a [math]\displaystyle{ pdf }[/math] that is both a function of time and stress or:



[math]\displaystyle{ f(t,V)=\frac{1}{C{{e}^{\tfrac{B}{V}}}}\cdot {{e}^{-\tfrac{1}{C{{e}^{\tfrac{B}{V}}}}\cdot t}} }[/math]


Get More Details...
[Link2 See Examples...]



Docedit.png