Template:Ipl ex mean: Difference between revisions
Jump to navigation
Jump to search
(Created page with '====Mean or MTTF==== The mean, <math>\overline{T},</math> or Mean Time To Failure (MTTF) for the IPL-exponential relationship is given by: <br> ::<math>\begin{align} & \over…') |
|||
Line 4: | Line 4: | ||
<br> | <br> | ||
::<math>\begin{align} | ::<math>\begin{align} | ||
& \overline{T}= & \ | & \overline{T}= & \int_{0}^{\infty }t\cdot f(t,V)dt=\int_{0}^{\infty }t\cdot K{{V}^{n}}{{e}^{-K{{V}^{n}}t}}dt =\ \frac{1}{K{{V}^{n}}} | ||
\end{align}</math> | \end{align}</math> | ||
Revision as of 17:24, 15 February 2012
Mean or MTTF
The mean, [math]\displaystyle{ \overline{T}, }[/math] or Mean Time To Failure (MTTF) for the IPL-exponential relationship is given by:
- [math]\displaystyle{ \begin{align} & \overline{T}= & \int_{0}^{\infty }t\cdot f(t,V)dt=\int_{0}^{\infty }t\cdot K{{V}^{n}}{{e}^{-K{{V}^{n}}t}}dt =\ \frac{1}{K{{V}^{n}}} \end{align} }[/math]
Note that the MTTF is a function of stress only and is simply equal to the IPL relationship (which is the original assumption), when using the exponential distribution.