Template:Eyring-ex mean: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
(Created page with '====Mean or MTTF==== <br> The mean, <math>\overline{T},</math> or Mean Time To Failure (MTTF) for the Eyring-exponential is given by: <br> ::<math>\begin{align} & \overline{T}…')
 
Line 5: Line 5:
<br>
<br>
::<math>\begin{align}
::<math>\begin{align}
   & \overline{T}= & \mathop{}_{0}^{\infty }t\cdot f(t,V)dt=\mathop{}_{0}^{\infty }t\cdot V{{e}^{\left( A-\tfrac{B}{V} \right)}}{{e}^{-tV{{e}^{\left( A-\tfrac{B}{V} \right)}}}}dt \\  
   & \overline{T}= & \int_{0}^{\infty }t\cdot f(t,V)dt=\int_{0}^{\infty }t\cdot V{{e}^{\left( A-\tfrac{B}{V} \right)}}{{e}^{-tV{{e}^{\left( A-\tfrac{B}{V} \right)}}}}dt \\  
  & = & \frac{1}{V}{{e}^{-\left( A-\tfrac{B}{V} \right)}}   
  & = & \frac{1}{V}{{e}^{-\left( A-\tfrac{B}{V} \right)}}   
\end{align}</math>
\end{align}</math>

Revision as of 22:34, 14 February 2012

Mean or MTTF


The mean, [math]\displaystyle{ \overline{T}, }[/math] or Mean Time To Failure (MTTF) for the Eyring-exponential is given by:


[math]\displaystyle{ \begin{align} & \overline{T}= & \int_{0}^{\infty }t\cdot f(t,V)dt=\int_{0}^{\infty }t\cdot V{{e}^{\left( A-\tfrac{B}{V} \right)}}{{e}^{-tV{{e}^{\left( A-\tfrac{B}{V} \right)}}}}dt \\ & = & \frac{1}{V}{{e}^{-\left( A-\tfrac{B}{V} \right)}} \end{align} }[/math]