Template:Acb4weib on reliability: Difference between revisions
Jump to navigation
Jump to search
(Created page with '===Confidence Bounds on Reliability=== <br> The reliability function for the Arrhenius-Weibull model (ML estimate) is given by: <br> ::<math>\widehat{R}(T,V)={{e}^{-{{\left( \…') |
|||
Line 1: | Line 1: | ||
===Confidence Bounds on Reliability=== | ====Confidence Bounds on Reliability==== | ||
<br> | <br> |
Revision as of 00:02, 14 February 2012
Confidence Bounds on Reliability
The reliability function for the Arrhenius-Weibull model (ML estimate) is given by:
- [math]\displaystyle{ \widehat{R}(T,V)={{e}^{-{{\left( \tfrac{T}{\widehat{C}\cdot {{e}^{\tfrac{\widehat{B}}{V}}}} \right)}^{\widehat{\beta }}}}} }[/math]
or:
- [math]\displaystyle{ \widehat{R}(T)={{e}^{-{{e}^{\ln \left[ {{\left( \tfrac{T}{\widehat{C}\cdot {{e}^{\tfrac{\widehat{B}}{V}}}} \right)}^{\widehat{\beta }}} \right]}}}} }[/math]
Setting:
- [math]\displaystyle{ \widehat{u}=\ln \left[ {{\left( \frac{T}{\widehat{C}\cdot {{e}^{\tfrac{\widehat{B}}{V}}}} \right)}^{\widehat{\beta }}} \right] }[/math]
or:
- [math]\displaystyle{ \widehat{u}=\widehat{\beta }\left[ \ln (T)-\ln (\widehat{C})-\frac{\widehat{B}}{V} \right] }[/math]
The reliability function now becomes:
- [math]\displaystyle{ \widehat{R}(T,V)={{e}^{-{{e}^{\widehat{u}}}}} }[/math]
The next step is to find the upper and lower bounds on [math]\displaystyle{ \widehat{u}\ \ : }[/math]
- [math]\displaystyle{ {{u}_{U}}=\widehat{u}+{{K}_{\alpha }}\sqrt{Var(\widehat{u})} }[/math]
- [math]\displaystyle{ {{u}_{L}}=\widehat{u}-{{K}_{\alpha }}\sqrt{Var(\widehat{u})} }[/math]
where:
- [math]\displaystyle{ \begin{align} & Var(\widehat{u})= & {{\left( \frac{\partial \widehat{u}}{\partial \beta } \right)}^{2}}Var(\widehat{\beta })+{{\left( \frac{\partial \widehat{u}}{\partial B} \right)}^{2}}Var(\widehat{B})+{{\left( \frac{\partial \widehat{u}}{\partial C} \right)}^{2}}Var(\widehat{C}) \\ & & +2\left( \frac{\partial \widehat{u}}{\partial \beta } \right)\left( \frac{\partial \widehat{u}}{\partial B} \right)Cov(\widehat{\beta },\widehat{B})+2\left( \frac{\partial \widehat{u}}{\partial \beta } \right)\left( \frac{\partial \widehat{u}}{\partial C} \right)Cov(\widehat{\beta },\widehat{C}) \\ & & +2\left( \frac{\partial \widehat{u}}{\partial B} \right)\left( \frac{\partial \widehat{u}}{\partial C} \right)Cov(\widehat{B},\widehat{C}) \end{align} }[/math]
or:
- [math]\displaystyle{ \begin{align} & Var(\widehat{u})= & {{\left( \frac{\widehat{u}}{\widehat{\beta }} \right)}^{2}}Var(\widehat{\beta })+{{\left( \frac{\widehat{\beta }}{V} \right)}^{2}}Var(\widehat{B})+{{\left( \frac{\widehat{\beta }}{\widehat{C}} \right)}^{2}}Var(\widehat{C}) \\ & & -\frac{2\widehat{u}}{V}Cov(\widehat{\beta },\widehat{B})-\frac{2\widehat{u}}{\widehat{C}}Cov(\widehat{\beta },\widehat{C})+\frac{2{{\widehat{\beta }}^{2}}}{V\widehat{C}}Cov(\widehat{B},\widehat{C}) \end{align} }[/math]
The upper and lower bounds on reliability are:
- [math]\displaystyle{ \begin{align} & {{R}_{U}}(T,V)= & {{e}^{-{{e}^{\left( {{u}_{L}} \right)}}}} \\ & {{R}_{L}}(T,V)= & {{e}^{-{{e}^{\left( {{u}_{U}} \right)}}}} \end{align} }[/math]
where [math]\displaystyle{ {{u}_{U}} }[/math] and [math]\displaystyle{ {{u}_{L}} }[/math] are estimated from Eqns. (ArreibRupper) and (ArreibRlower).