Template:Loglogistic mean median and mode: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 13: Line 13:
The mode of the loglogistic distribution,  <math>\tilde{T}</math> , if  <math>\sigma <1,</math>  is given by:
The mode of the loglogistic distribution,  <math>\tilde{T}</math> , if  <math>\sigma <1,</math>  is given by:


<math>\tilde{T} = e^{\mu+\sigma ln(\frac{1-\sigma}{1+\sigma})}</math>
::<math>\tilde{T} = e^{\mu+\sigma ln(\frac{1-\sigma}{1+\sigma})}</math>

Revision as of 22:28, 4 January 2012

Mean, Median and Mode

The mean of the loglogistic distribution, [math]\displaystyle{ \overline{T} }[/math] , is given by:

[math]\displaystyle{ \overline{T}={{e}^{\mu }}\Gamma (1+\sigma )\Gamma (1-\sigma ) }[/math]


Note that for [math]\displaystyle{ \sigma \ge 1, }[/math] [math]\displaystyle{ \overline{T} }[/math] does not exist.

The median of the loglogistic distribution, [math]\displaystyle{ \breve{T} }[/math] , is given by:

[math]\displaystyle{ \widehat{T}={{e}^{\mu }} }[/math]

The mode of the loglogistic distribution, [math]\displaystyle{ \tilde{T} }[/math] , if [math]\displaystyle{ \sigma \lt 1, }[/math] is given by:

[math]\displaystyle{ \tilde{T} = e^{\mu+\sigma ln(\frac{1-\sigma}{1+\sigma})} }[/math]