Template:Normal failure rate function: Difference between revisions
Jump to navigation
Jump to search
(Created page with '===The Normal Failure Rate Function=== The instantaneous normal failure rate is given by: ::<math>\lambda (T)=\frac{f(T)}{R(T)}=\frac{\tfrac{1}{{{\sigma }_{T}}\sqrt{2\pi }}{{e…') |
|||
Line 3: | Line 3: | ||
The instantaneous normal failure rate is given by: | The instantaneous normal failure rate is given by: | ||
::<math>\lambda ( | ::<math>\lambda (t)=\frac{f(t)}{R(t)}=\frac{\tfrac{1}{{{\sigma }}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{t-\mu }{{{\sigma }}} \right)}^{2}}}}}{\int_{t}^{\infty }\tfrac{1}{{{\sigma }}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{x-\mu }{{{\sigma }}} \right)}^{2}}}}dx}</math> |
Revision as of 18:05, 10 February 2012
The Normal Failure Rate Function
The instantaneous normal failure rate is given by:
- [math]\displaystyle{ \lambda (t)=\frac{f(t)}{R(t)}=\frac{\tfrac{1}{{{\sigma }}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{t-\mu }{{{\sigma }}} \right)}^{2}}}}}{\int_{t}^{\infty }\tfrac{1}{{{\sigma }}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{x-\mu }{{{\sigma }}} \right)}^{2}}}}dx} }[/math]