Template:Normal failure rate function: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
(Created page with '===The Normal Failure Rate Function=== The instantaneous normal failure rate is given by: ::<math>\lambda (T)=\frac{f(T)}{R(T)}=\frac{\tfrac{1}{{{\sigma }_{T}}\sqrt{2\pi }}{{e…')
 
Line 3: Line 3:
The instantaneous normal failure rate is given by:  
The instantaneous normal failure rate is given by:  


::<math>\lambda (T)=\frac{f(T)}{R(T)}=\frac{\tfrac{1}{{{\sigma }_{T}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{T-\mu }{{{\sigma }_{T}}} \right)}^{2}}}}}{\int_{T}^{\infty }\tfrac{1}{{{\sigma }_{T}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{t-\mu }{{{\sigma }_{T}}} \right)}^{2}}}}dt}</math>
::<math>\lambda (t)=\frac{f(t)}{R(t)}=\frac{\tfrac{1}{{{\sigma }}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{t-\mu }{{{\sigma }}} \right)}^{2}}}}}{\int_{t}^{\infty }\tfrac{1}{{{\sigma }}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{x-\mu }{{{\sigma }}} \right)}^{2}}}}dx}</math>

Revision as of 18:05, 10 February 2012

The Normal Failure Rate Function

The instantaneous normal failure rate is given by:

[math]\displaystyle{ \lambda (t)=\frac{f(t)}{R(t)}=\frac{\tfrac{1}{{{\sigma }}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{t-\mu }{{{\sigma }}} \right)}^{2}}}}}{\int_{t}^{\infty }\tfrac{1}{{{\sigma }}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{x-\mu }{{{\sigma }}} \right)}^{2}}}}dx} }[/math]