Template:Normal probability density function: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
(Created page with '==Normal Probability Density Function== The <math>pdf</math> of the normal distribution is given by: ::<math>f(T)=\frac{1}{{{\sigma }_{T}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\…')
 
Line 3: Line 3:
The  <math>pdf</math>  of the normal distribution is given by:  
The  <math>pdf</math>  of the normal distribution is given by:  


::<math>f(T)=\frac{1}{{{\sigma }_{T}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{T-\mu }{{{\sigma }_{T}}} \right)}^{2}}}}</math>
::<math>f(t)=\frac{1}{{{\sigma }_{t}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{t-\mu }{{{\sigma }} \right)}^{2}}}}</math>


:where:  
:where:  
Line 12: Line 12:




It is a two-parameter distribution with parameters  <math>\mu </math>  (or  <math>\bar{T}</math> ) and  <math>{{\sigma }_{T}}</math> , i.e. the mean and the standard deviation, respectively.
It is a two-parameter distribution with parameters  <math>\mu </math>  (or  <math>\bar{T}</math> ) and  <math>{{\sigma }}</math> , i.e. the mean and the standard deviation, respectively.

Revision as of 17:52, 10 February 2012

Normal Probability Density Function

The [math]\displaystyle{ pdf }[/math] of the normal distribution is given by:

[math]\displaystyle{ f(t)=\frac{1}{{{\sigma }_{t}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{t-\mu }{{{\sigma }} \right)}^{2}}}} }[/math]
where:

[math]\displaystyle{ \mu= \text{mean of the normal times-to-faiure, also noted as} \bar T }[/math]

[math]\displaystyle{ \theta=\text{standard deviation of the times-to-failure} }[/math]


It is a two-parameter distribution with parameters [math]\displaystyle{ \mu }[/math] (or [math]\displaystyle{ \bar{T} }[/math] ) and [math]\displaystyle{ {{\sigma }} }[/math] , i.e. the mean and the standard deviation, respectively.