Weibull++ Standard Folio Data Lognormal: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 13: | Line 13: | ||
|- | |- | ||
| align="center" valign="middle" | | | align="center" valign="middle" | | ||
The lognormal distribution is a two-parameter distribution with parameters <br> | The lognormal distribution is a two-parameter distribution with parameters <br> | ||
<math>{\mu }'</math> and <math>{{\sigma }_{{{T}'}}}</math>. <br> The ''pdf'' is given by: | <math>{\mu }'</math> and <math>{{\sigma }_{{{T}'}}}</math>. <br> The ''pdf'' is given by: | ||
Line 20: | Line 18: | ||
::<math>f({T}')=\frac{1}{{{\sigma }_{{{T}'}}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{{{T}^{\prime }}-{\mu }'}{{{\sigma }_{{{T}'}}}} \right)}^{2}}}}</math> | ::<math>f({T}')=\frac{1}{{{\sigma }_{{{T}'}}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{{{T}^{\prime }}-{\mu }'}{{{\sigma }_{{{T}'}}}} \right)}^{2}}}}</math> | ||
<br> where, | <br> where, | ||
<br><math>{T}'=\ln (T)</math> | <br><math>{T}'=\ln (T)</math> and | ||
<br><math>\mu' \text{ and } <math>\sigma_{T'}</math>\ | |||
are the mean and standard deviation of of the natural logarithms of the times-to-failure. | |||
|- | |- | ||
| align="center" valign="middle" | [http://www.reliawiki.com/index.php/The_Weibull_Distribution Get More Details...] | | align="center" valign="middle" | [http://www.reliawiki.com/index.php/The_Weibull_Distribution Get More Details...] | ||
Line 37: | Line 27: | ||
|} | |} | ||
Revision as of 19:06, 11 November 2011
Reliability Web Notes |
---|
Weibull Folio |
Life Data Analysis |
The lognormal distribution is commonly used to model the lives of units whose failure modes are of a fatigue-stress nature. It has an increasing failure rate behavior and then decreasing towards the end of life. |
The lognormal distribution is a two-parameter distribution with parameters
|
Get More Details... |
See Examples... |