Weibull++ Standard Folio Data Lognormal: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 15: | Line 15: | ||
The lognormal distribution is a two-parameter distribution with parameters <math>{\mu }'</math> and <math>{{\sigma }_{{{T}'}}}</math> . | The lognormal distribution is a two-parameter distribution with parameters <br> | ||
<math>{\mu }'</math> and <math>{{\sigma }_{{{T}'}}}</math>. <br> The ''pdf'' is given by: | |||
::<math>f({T}')=\frac{1}{{{\sigma }_{{{T}'}}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{{{T}^{\prime }}-{\mu }'}{{{\sigma }_{{{T}'}}}} \right)}^{2}}}}</math> | ::<math>f({T}')=\frac{1}{{{\sigma }_{{{T}'}}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{{{T}^{\prime }}-{\mu }'}{{{\sigma }_{{{T}'}}}} \right)}^{2}}}}</math> | ||
<br> where, | |||
where, <math>{T}'=\ln (T)</math>. , where the <math>T</math> values are the times-to-failure, and | <br><math>{T}'=\ln (T)</math>. , where the <math>T</math> values are the times-to-failure, and | ||
:<math>\mu'=\text{mean of the natural logarithms}</math> | :<math>\mu'=\text{mean of the natural logarithms}</math> | ||
Revision as of 19:03, 11 November 2011
Reliability Web Notes |
---|
Weibull Folio |
Life Data Analysis |
The lognormal distribution is commonly used to model the lives of units whose failure modes are of a fatigue-stress nature. It has an increasing failure rate behavior and then decreasing towards the end of life. |
|
Get More Details... |
See Examples... |