Weibull++ Standard Folio Data 1P-Weibull: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 8: | Line 8: | ||
|- | |- | ||
| align="center" valign="middle" | {{Font|Life Data Analysis|10|tahoma|bold|gray}} | | align="center" valign="middle" | {{Font|Life Data Analysis|10|tahoma|bold|gray}} | ||
|- | |||
| align="center" valign="middle" | {{Font|One-Parameter Weibull Distribution|9|tahoma|bold|gray}} | |||
|- | |- | ||
| align="center" valign="middle" | | | align="center" valign="middle" | |
Revision as of 18:40, 6 January 2012
Reliability Web Notes |
---|
Weibull Folio |
Life Data Analysis |
One-Parameter Weibull Distribution |
The One-parameter Weibull distribution is a special case of the general Weibull distribution. With the one-parameter Weibull, we assume that the shape parameter is Constant and known a priori, and must be supplied by the analyst. This in turn sets the failure rate behavior. The advantage of doing this is that data sets with few or no failures can be analyzed. |
[math]\displaystyle{ f(T)={ \frac{C}{\eta }}\left( {\frac{T}{\eta }}\right) ^{C-1}e^{-\left( {\frac{T}{ \eta }}\right) ^{C}} \,\! }[/math]
|
Get More Details... |
See Examples... |