Weibull++ Standard Folio Data 2P-Weibull: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 14: Line 14:
|-
|-
| align="center" valign="left" |
| align="center" valign="left" |
::<math> f(T)={ \frac{\beta }{\eta }}\left( {\frac{T}{\eta }}\right) ^{\beta -1}e^{-\left( { \frac{T}{\eta }}\right) ^{\beta }} \,\!</math>
<br><math> f(T)={ \frac{\beta }{\eta }}\left( {\frac{T}{\eta }}\right) ^{\beta -1}e^{-\left( { \frac{T}{\eta }}\right) ^{\beta }} \,\!</math>
::<math> \eta= \,\!</math> scale parameter, or characteristic life, and <br>  
<br><math> \eta= \,\!</math> scale parameter, or characteristic life, and <br>  
::<math> \beta= \,\!</math> shape parameter (or slope).
<br><math> \beta= \,\!</math> shape parameter (or slope).
|-
|-
| align="center" valign="middle" | Parameters
| align="center" valign="middle" | Parameters

Revision as of 17:44, 11 November 2011

Reliability Web Notes

Weibull Folio
Life Data Analysis

The Weibull distribution is one of the most widely used lifetime distributions in reliability engineering. It can model an increasing, decreasing and or constant failure rate behavior. The 2-parameter Weibull is the most commonly used form of the distribution. It's pdf is given by:


[math]\displaystyle{ f(T)={ \frac{\beta }{\eta }}\left( {\frac{T}{\eta }}\right) ^{\beta -1}e^{-\left( { \frac{T}{\eta }}\right) ^{\beta }} \,\! }[/math]
[math]\displaystyle{ \eta= \,\! }[/math] scale parameter, or characteristic life, and

[math]\displaystyle{ \beta= \,\! }[/math] shape parameter (or slope).

Parameters
More Details
Examples



Docedit.png