Weibull++ Standard Folio Data 2P-Weibull: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 14: Line 14:
<math> f(T)={ \frac{\beta }{\eta }}\left( {\frac{T}{\eta }}\right) ^{\beta -1}e^{-\left( { \frac{T}{\eta }}\right) ^{\beta }} \,\!</math>
<math> f(T)={ \frac{\beta }{\eta }}\left( {\frac{T}{\eta }}\right) ^{\beta -1}e^{-\left( { \frac{T}{\eta }}\right) ^{\beta }} \,\!</math>
<br>where<br>
<br>where<br>
<math> \eta= \,\!</math> scale parameter, or characteristic life  
<math> \eta= \,\!</math> scale parameter, or characteristic life, and <br>
<math> \beta= \,\!</math> shape parameter (or slope).
<math> \beta= \,\!</math> shape parameter (or slope).
|-
|-

Revision as of 17:40, 11 November 2011

Reliability Web Notes

Weibull Folio
Life Data Analysis
The 2 parameter Weibull distribution pdf is given by

[math]\displaystyle{ f(T)={ \frac{\beta }{\eta }}\left( {\frac{T}{\eta }}\right) ^{\beta -1}e^{-\left( { \frac{T}{\eta }}\right) ^{\beta }} \,\! }[/math]
where
[math]\displaystyle{ \eta= \,\! }[/math] scale parameter, or characteristic life, and
[math]\displaystyle{ \beta= \,\! }[/math] shape parameter (or slope).

Parameters
More Details
Examples



Docedit.png