Weibull++ Standard Folio Data 2P-Weibull: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 11: | Line 11: | ||
| align="center" valign="middle" | The 2 parameter Weibull... | | align="center" valign="middle" | The 2 parameter Weibull... | ||
|- | |- | ||
| align="center" valign="middle" | | | align="center" valign="middle" | | ||
<math> f(T)={ \frac{\beta }{\eta }}\left( {\frac{T}{\eta }}\right) ^{\beta -1}e^{-\left( { \frac{T}{\eta }}\right) ^{\beta }} \,\!</math> | |||
<math> \eta= \,\!</math> scale parameter, or characteristic life | |||
<math> \beta= \,\!</math> shape parameter (or slope). | |||
|- | |- | ||
| align="center" valign="middle" | Parameters | | align="center" valign="middle" | Parameters |
Revision as of 17:38, 11 November 2011
Reliability Web Notes |
---|
Weibull Folio |
Life Data Analysis |
The 2 parameter Weibull... |
[math]\displaystyle{ f(T)={ \frac{\beta }{\eta }}\left( {\frac{T}{\eta }}\right) ^{\beta -1}e^{-\left( { \frac{T}{\eta }}\right) ^{\beta }} \,\! }[/math] [math]\displaystyle{ \eta= \,\! }[/math] scale parameter, or characteristic life [math]\displaystyle{ \beta= \,\! }[/math] shape parameter (or slope). |
Parameters |
More Details |
Examples |